TacTex'13: A Champion Adaptive Power Trading Agent

DANIEL URIELI, PETER STONE

The Univ. of Texas at Austin Austin, TX 78712 USA {urieli,pstone}@cs.utexas.edu

• The Power Trading Agent Competition (Power TAC): open

competition using rich smart grid simulation environment

• Focus: retail power markets structure and operation

• Competitors: autonomous broker agents

1. Retail power market designs

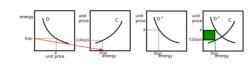
2. Related automation technologies

• Low-risk platform for modeling and testing:

Power TAC

Motivation

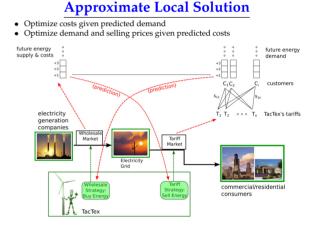
Energy Markets


- Renewable resources do not provide energy on demand
 - Old paradigm: supply follows demand

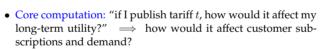
Power TAC: Broker Operation Cycle

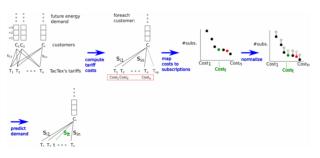
- New paradigm: demand follows supply
- Needed: new market structures that motivate sustainable behaviors by all participants
- Issues to address: reliability, balancing, peak-demand, energyefficiency, environmental effects
- However, transition to new market structures can be risky, e.g. California energy crisis 2000-2001

TacTex'13 Approach: Demand and Cost Curves

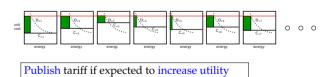

Goal: maximize profits. How: buy and sell energy
Define: demand curve *D*, unit-cost curve *C*

- Utility $u(p) := D(p) \times p D(p) \times C(D(p))$
- For a single time step the optimization problem is $\arg \max_{\{A_D, A_C, p\}} u(D, C, p)$, where A_D, A_C, p are the actions affecting the demand-curve, cost-curve and energy selling-price, respectively. The full, sequential optimization problem is $\arg \max_{\{A_t \subset A\}_{t=+1}^{+T}} \sum_{t=+1}^{+T} E[u_t(D_t, C_t, p_t)]$. This problem is generally intractable. We approximate it using a local solution.





- **Decision Making in the Tariff Market**
 - Primary way to sell energy
 - Available actions: tariff publications
 - Tariff: contract for selling/buying energy
 - E.g.: [type=consumption, rates=(rate1, rate2,...), signup-fee=none,...]
 - Rate: energy prices per time and/or quantity
 - Rate types: fixed, time-of-use (TOU), real-time (RT)..
 - Fixed: [fixed=true, price=7cent/kWh]
 - Customers subscribe to tariffs they find attractive
 Cheap, minimizes inconvenience...


Challenge: what tariffs should a broker publish?

• Considering only fixed-rate tariffs

- More attractive to customers
- Optimizing one future price instead of a sequence
- Estimate future customers demand
- Estimate future wholesale costs
- Select price that maximizes profits

Decision Making in the Wholesale Market

- Available actions: bid submissions
 - Bid: [needed-amount=2mWh, limit=25\$/mWh, when=5pm]
- Bids cleared in a double auction:

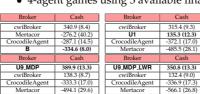
Challenge:

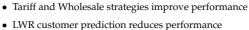
strategy to use?

- , **T ----**--- Z-----
- Day ahead market ⇒ 24 auctions for each timeslot
 Need to:
 - Buy energy cheaply
 - Avoid imbalance costs \implies buy all needed energy

what bidding

• For each future timeslot: estimate future demand, then minimize cost for satisfying this demand

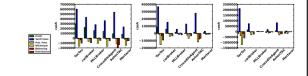

- **MDP Actions:** limit-price $\in \mathbb{R}$
- Transition function is learned from past clearing-prices.
 Strong state generalization allows for quick learning through high reuse of computation and data.
- high reuse of computation and data.


Controlled Experiments - Ablation Analysis

- Round-Robin 2-agent tournament between:
 - B: baseline agent
 - U1: adding tariff-market strategy
 - U9_MDP: adding wholesale-market strategy
 - U9_MDP_LWR: adding LWR customer prediction
- Each pair played 200 games with similar conditions
- J9.MDP_LWR
 1278.3 (43.2)
 708.9 (35.6)
 34.2 (23.2)

 U9.MDP
 966.4 (40.5)
 592.6 (22.2)
 11
 547.4 (27.7)

• 4-agent games using 3 available finalist agents



- Power TAC 2013 Final Results
 - Our agent, TACTEX'13, won the **Power TAC 2013** finals:

Broker	7-broker	4-broker	2-broker	Total (not normalized)
TacTex	-705248	13493825	17853189	30641766
cwiBroker	647400	12197772	13476434	26321606
MLLBroker	8533	3305131	9482400	12796064
CrocodileAgent	-361939	1592764	7105236	8336061
AstonTAC	345300	5977354	5484780	11807435
Mertacor	-621040	1279380	4919087	5577427
INAOEBroker02	-76112159	-497131383	-70255037	-643498580

• 2-agent (top-left), 4-agent (top-right), 7-agent games:

Summary

- TacTex'13: utility-optimizing broker agent
- Interdependent optimization problems
 - Utility-maximizing tariff strategy
 - Online reinforcement learning bidding algorithm

• Outlook

- Investigating other tariff, wholesale and balancing
- strategiesImpact on the smart grid and customer behaviors