

Amory B. Lovins

Chairman and Chief Scientist, Rocky Mountain Institute www.rmi.org, ablovins@rmi.org

NSF CPS Program Annual PI Meeting/Conf., 2 Aug 2011 (video)

Copyright © 2011 Rocky Mountain Institute. All rights reserved.

A bigger picture

What How Technology Old **Policy** New Design Strategy

Oil: America's two-billion-dollar a day addiction

Costs of Oil Dependency to the U.S. Economy:

Source:

Greene, David L., and Janet L. Hopson, "The Costs of Oil Dependence 2009," Oak Ridge National Laboratory Memorandum, 2010

Oil: America's billion-dollar a day addiction

Oil: America's billion-dollar-a-day addiction

Oil: America's billion-dollar-a-day addiction

Reducing tractive load first leverages 7:1 fuel savings

ı

Source: RMI analysis of: Sovran & Blaser, SAE 2003-01-2070; typical 2003 midsize sedan, EPA 55/45 city/highway cycle

Vehicle fitness can cheaply triple efficiency—and unlock electric propulsion

Vehicle fitness can cheaply triple efficiency—and unlock electric propulsion

Bright *IDEA* 1-T 5-m³ van (2009) 3–12×-efficiency plug-in hybrid, needs no subsidy

Hypercar *Revolution* SUV (2000) 67 mpg (114 w/H₂), 2-y payback

Toyota 1/X sedan (2007)

Prius size, 1/2 fuel use, 1/3 weight

VW XL1 2-seat plug-in hybrid (2011), 1,752 lb, 230 mpg_{gasoline}, 2013 production

Migrating innovation from military/aerospace to high-volume automaking

95% carbon composite, I/3 lighter, 2/3 cheaper

Radically simplified manufacturing

14 parts, ~99% less tooling cost no body shop, perhaps no paint shop 2/3 smaller powertrain New U.S. and foreign manufacturing technology can make affordable carbon-composite structures in less than one minute

Decompounding mass and complexity also decompounds cost

Exotic materials, low-volume special propulsion components, innovative design

Only ~40–50 kg C, 20–45 kW_e, no paint?,

radically simplified, little assembly,...

New design strategy, materials, and technologies

Design to win the future, not perpetuate the past

Present design space

New design space

Foundation

Platform

First production

variant

Design "in the future"

Federal, state, or regional policy can unlock this potential

Feebates provide early stimulus to preserve margins while battery and EV costs are high; after technology becomes mature, fuel savings provide surplus for OEMs, dealers, and customers to share

Tripled-efficiency trucks can also pay back quickly

Prevost (Québec) bus, Cd = 0.31

RMI, 2008, www.rmi.org/rmi/Library/T08-08_TransformationalTrucksEnergyEfficiency; NAS/NRC, 2010, www.nap.edu/catalog.php?record_id=12845

Emerging efficient airplanes offer up to 70% lower fuel burn than today's aircraft (2010 U.S. fleet average)

Clockwise from top: Boeing's SUGAR Volt electric-battery gas-turbine hybrid propulsion system with a strut-braced wing (-70% fuel); MIT H-Series Blended Wing Body concept with podded, actively controlled boundary-layer-inlet propulsion (-59%); Honda light jet with top-mounted engines; NASA truss-braced wing concept with buried single rear propulsor (-60-80%); winged seed of the tropical Asian climbing gourd Alsomitra macrocarpa, which glides for hundreds of meters. Another $\sim 2 \times$ can be saved with unducted-fan or fuel-cell LH₂ cryoplanes, well validated in several countries, and $\sim 5-12\%$ with morphing flight surfaces already flight-tested.

Ultramodern aeronautical technology embodied in a gliding bird

A California Condor (Gymnogyps californianus)

Important Aeronautical Technology Incorporated In Birds

- Mission Adaptive Wing
- Active Controls/ Control Configured Vehicles
- Composite structures
- Damage Tolerant Structures
- Fully integrated System Design
- Advanced
 Manufacturing
 Techniques

Courtesy of Dr. Paul MacCready (1925–2007) Founder and Chairman, AeroVironment, Inc.

Revolutions in how vehicles are not just made but also used

The bottom line for transportation: \$4 trillion net present value

"We must leave oil before it leaves us."

—Fatih Birol, Chief Economist, International Energy Agency, 2008

Lovins House, Old Snowmass, Colorado, 1984

–47°F with no heating/cooling equipment, yet *lower* construction cost

Whole-System Thinking

World electricity use

World electricity use

60% Motors

World electricity use

30% Pumps and Fans

Fat, Short, Straight Pipes

No new technologies, just two changes in design mentality

1. Big pipes, small pumps (not the opposite)

2. Lay out the pipes first,then the equipment(not the reverse)

≥7x savings...then another ~4x...

Fat, short, straight pipes — not thin, long, crooked pipes!

Benefits counted

- ≥7× less pumping energy
- Lower capital cost

"Bonus" benefit also captured

70 kW lower heat loss from pipes

Additional benefits not counted

- Less space, weight, and noise
- Clean layout for easy maintenance access
- Needs little maintenance, yet better uptime
- Longer equipment life, more flexible capacity

Count these too and save...>96%?

Which of these layouts uses less capital and energy?

- Less space, weight, friction, energy
- Fewer parts, smaller pumps and motors, less installation labor
- Less O&M, higher uptime

Changing pipes to reduce friction saves 75% of pumping energy

(Rumsey Engineers, Oakland Museum, condenser-water pumping loop retrofit)

15 "negapumps"

Notice smooth piping design – 45°s and Ys

Energy efficiency: start downstream

Energy efficiency: start downstream

>100× energy leverage in the EDS data center

Data Center

Into Server

Power Plant

Into Chips

Applications

Business Process

Customer Value

Start Downstream

www.10xe.org

Practical design keys to a broad and profitable efficiency revolution

- Optimize whole systems for multiple benefits
- Bust barriers, and reward what we want
- Faith, hope, clarity, and relentless patience
- This unprecedented cornucopia is the manual model: we must all actually go turn the crank!
- "Preach the gospel at all times. If necessary, use words."

—St. Francis of Assissi

The secret of great design integration:

No Compromise!

Design is *not* the art of compromise and tradeoff—how not to get what you want

J. Baldwin: "Nature
doesn't compromise;
nature optimizes. A
pelican is not a
compromise between a
seagull and a crow."
It is the best possible
pelican (so far)—and
after 90 million years,
that's a pretty good one

Helpful design hints

- You can only get to simplicity through complexity.

 -Anon.
- Everything should be made as simple as possible..but not simpler.
 -Einstein
- I wouldn't give a nickel for the simplicity on this side of complexity—but I'd give my life for the simplicity on the *other* side of complexity.
- Perfect simplicity is not when there's nothing left to add, but when there's nothing left to take away.

 -St.-Exupéry
- How did I sculpt David? I just chiseled away everything that wasn't David.

 —Michaelangelo
- Seek the pattern that connects.

 —Bateson
- You know you're on the right track when your solution for one problem accidentally solves several others.

 -Corbet
- Avoiding problems is even better than solving them.
- All the really important design errors are made on the first day. -Anon.

Global markets are rapidly shifting to distributed renewables

Nuclear and micropower generation have more than swapped roles, mainly due to market perceptions of their relative costs and risks

Sources: nuclear and total: BP Statistical Review of World Energy 2010; micropower: RMI analysis from industry sources (<u>www.rmi.org/rmi/Library/2010-06_MicropowerDatabase</u>). BP generation data are gross, renewables generally net (understating their relative share).

U.S. coal-fired electricity avoidable by...

Four U.S. electricity futures, 2010–2050

Transforming the electricity sector

Current System

Reinventing Fire System

Energy
Efficiency
& Renewables

Energy Efficiency & Renewables

Natural Gas & Oil

Combined-heat-and-power,
Other distributed gen.

Coal and Nuclear

Demand response & El. vehicles

Reinventing Fire provides a credible vision of a U.S. economy free of oil and coal by 2050

Energy Use in the U.S. Economy, 2010-2050

