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Challenges in industrial real-time 
networks 

 Radio frequency spectrum is a scarce resource 
 Low-range WPAN PHYs vs. state-of-art (WLAN, cellular) 

 Increasing gap in technology with non-adaptive LR-WPAN schemes 

 New paradigms (e.g., dynamic spectrum access, better PHY 
designs) to allow for the required amount of radio spectrum 
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Motivation 

 Science of Integration: requires predictability 

 Timing (deadlines) 

 Reliability (probability of successful packet delivery) 

 

 



Motivation 

 Go beyond treating the wireless network as „black box” 

 Design goal: maximize the probability of successful packet 
transmission within a given deadline (reliability) 

 Analyse reliability and delay with realistic environment models 

 Analytically 

 Using a realistic system simulation 

 Incorporate physical layer realiability information into routing and 
scheduling 

 



System under study 

 Industrial mesh network for sensor (and actuator) 
applications 

 Examples: WirelessHART, ISA 100.11a 

 Centralized network management 
 Pre-planned graph routing  

 TDMA-like network scheduling with periodic superframe structure 

 Low-range wireless personal network physical layer (PHY) 

 Typically: IEEE 802.15.4 
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I. Reliability analysis 

 Conventional routing approach: 

 Set up a connectivity graph 

 Choose (preferably) two independent routes using the two 
„best” links; allow for retransmission slots (overengineering) 

 „Best” route: highest average „signal strength”? Lowest 
average packet error rate? 

 



Reliability analysis 

 End-to-end reliability is stochastic and highly dependent 
on environment and equipment characteristics 

 The average packet error rate doesn’t say all 

 Average link strength tells even less 
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Reliability analysis 

 TDMA-like conflict-free scheduling allows 
analytical reliability analysis 

 Relies on the per-link outage probability  

 

 Outage is a practical measure 

 Fading parameters can be estimated using 
physical layer measurements 

 Derived results for known network layouts and 
randomly distributed nodes 



Realistic model of wireless 
propagation 

 Nakagami-m channel 

 Describes a broad class of channel fading 

 m characterizes the „severity” of fading 

 m=1 reduces to Rayleigh fading 

 m>1 can be used to approximate Rice fading 

 A distance-dependent path loss (for limiting 
cases of exponents 2 and 4 analytical results) 
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Per-link reliability 

 Link outage probability versus node density with 
different fading „severity” (random layouts) 

 To the nth nearest neighbor 
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From link to flow reliability 

 Classical dynamic programming can be used to 
find the most reliable route within a given 
deadline from the per-link outages: 

 

 

 Providing optimum redundant routes and 
optimum redundant link schedules is added 
complexity 

 



Applications to routing 

 Quantifying reliability gains from multipath next-
hop routing in a random network 
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Node density vs. reliability vs. 
deadline 

 Example: how many hops are optimum to bridge 
a given distance in a WirelessHART-like setting? 

 (line network) 
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II. Performance evaluation of wireless 
CPS 

 Need for accurate simulation models for real-time 
wireless mesh networks 

 Reasonable wireless performance models 

 Realistic path loss, correlated fading processes, transceiver 
impairments, interference, ... 

 More efficient simulation than TrueTime or Matlab+ns2 

 100’s of independent Monte Carlo runs should be feasible to get 
statistically significant results 
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System-level simulation framework 

SSimulink-generated  

code  

or ODEs 

Packet forwarding policy 

Link-level ACK and 

retransmission etc. 

Frame error rate  

(bit-level simulation or  

link-to-system  

abstraction) 

Setup of routing graphs, 

superframes, 

network schedule design; 

statistics collection 

Physical network layout 

Generation of channel realizations 

(large-scale fading, correlated small scale fading, 

impairments etc.) 

[ISRCS12],  

[SIMU13] 

Network 
Manager 
model 

Link performance model 

Data link and routing model 

CPS application model 

Space-time engine 



Realistic channel model 

 Measurements of the industrial channel: 

 Strong line-of-sight component 

 100 ms-scale coherence times 

 Low delay spread (-> high channel coherence 
bandwidth) 

 Correlation might be adverse in the NCS 
application 

 WirelessHART uses channel hopping 

 „multi-frequency” channel model needed 

 Computationally efficient multipath fading model 
with indenpendently parametrizable coherence 
time and coherence bandwidth 



Realistic channel model 

 Publish sensor measurement (5 hops) 

 Probability of succesful delivery 

before the next measurement generated 

 10 ms time slots 

 High correlation indeed impacts reliability 
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Case study: batch reactor with 
model-predictive controller 

 Classic networked control system benchmark 

 However, we assume a Model Predictive 
Controller (MPC) 

 Practical relevance 

 3-hop regular network layout 

 Path loss, shadowing and our fading model 

 Physical model: 

 Plant: ODE 

 Controller: Simulink-gen. 

C code 

 



Case study: batch reactor with 
model-predictive controller 

 Fixed deadline (6 time slots, 60 ms), metrics: 

 Successful delivery ratio  

 Probability of the step response remaining bounded 

 The independent loss model overestimates 
performance, esp. for significant fading 
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Case study: alternative PHY for 
WirelessHART 

 The IEEE 802.15.4 physical layer in WirelessHART is spectrally 
inefficient 

 Not robust under some typical channel conditions 

 Alternative designs exist (802.11a) – hard to integrate 

 IEEE 802.15.4g OFDM-based PHY as drop-in replacement for 
802.15.4 in WirelessHART? 

 

 



802.15.4g-based PHY 

 Compares favorably, especially 
over frequency-selective 
channels 

 Slow, flat fading is still bad 

 Side note: can we beat 
802.15.4 on highly correlated 
flat fading channels? 
 802.15.4g is designed for highly 

selective channels (very long 24 us 
cyclic prefix) 

 Delay diversity will be able extract 
frequency diversity from appropriate 
802.15.4g modes 

 Very well suited for 802.15.4g 50 100 150
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NCS example w/different PHYs 

 Batch reactor Networked Control System 
benchmark with standard PI controller 

 Sensor meas. through 3-hop uplink, wired 
actuator 

 Quadratic error of step response over 
many realizations 
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Future work 

 General challenge: push the envelope of 
predictability vs. network size to the right 



Future work 

 Research into topology-independent low-power 
asynchronous MAC schemes 

 „Collision forecasting” based on pseudorandom 
sequences  

 Adaptable to traffic characteristics 

 Multi-channel operation 
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Conclusions 

 Average link loss probabilities don’t tell the 
whole story 

 Analytic treatment of reliability in wireless real-time 
networks is possible for rather simple scenarios 

 Overengineering could be reduced by incorporating 
physical layer data and using better tailored PHY 
designs 

 Wireless real-time networks ought to become 
more complex in the future 

 Realistic system simulation to enable cross-layer 
integration  



Thank you! 

 


