

Vanderbilt University

Reliability and simulation of wireless realtime control networks

Peter Horvath with Mark Yampolskiy, Yuan Xue, Xenofon Koutsoukos

NSF CPS: Science of Integration for Cyber Physical Systems Annual Review Meeting April 23, 2013

Motivation

- Reliability analysis of wireless real-time networks
- Performance evaluation tool for wireless CPS
- Study of alternative physical layer technologies for WirelessHART-like networks
- Future work

- Radio frequency spectrum is a scarce resource
 - Low-range WPAN PHYs vs. state-of-art (WLAN, cellular)
- Increasing gap in technology with non-adaptive LR-WPAN schemes
- New paradigms (e.g., dynamic spectrum access, better PHY designs) to allow for the required amount of radio spectrum

Motivation

Science of Integration: requires predictability

- Timing (deadlines)
- Reliability (probability of successful packet delivery)

Motivation

- Go beyond treating the wireless network as "black box"
- Design goal: maximize the probability of successful packet transmission within a given deadline (reliability)
- Analyse reliability and delay with realistic environment models
 - Analytically
 - Using a realistic system simulation
- Incorporate physical layer realiability information into routing and scheduling

Actuator

- Industrial mesh network for sensor (and actuator) applications
 - Examples: WirelessHART, ISA 100.11a
 - Centralized network management
 - Pre-planned graph routing
 - TDMA-like network scheduling with periodic superframe structure
 - Low-range wireless personal network physical layer (PHY)
 - Typically: IEEE 802.15.4

Actuator

- Motivation
- Reliability analysis of wireless real-time networks
- Performance evaluation tool for wireless CPS
- Study of alternative physical layer technologies for WirelessHART-like networks
- Future work

- Conventional routing approach:
 - Set up a connectivity graph
 - Choose (preferably) two independent routes using the two "best" links; allow for retransmission slots (overengineering)
- "Best" route: highest average "signal strength"? Lowest average packet error rate?

- End-to-end reliability is stochastic and highly dependent on environment and equipment characteristics
- The average packet error rate doesn't say all
- Average link strength tells even less

- TDMA-like conflict-free scheduling allows analytical reliability analysis
- Relies on the <u>per-link</u> outage probability

 $P_{\rm out} = Pr[\rm SNR < \eta]$

- Outage is a practical measure
- Fading parameters can be estimated using physical layer measurements
- Derived results for known network layouts and randomly distributed nodes

- Nakagami-*m* channel
 - Describes a broad class of channel fading
 - *m* characterizes the "severity" of fading
 - m=1 reduces to Rayleigh fading
 - m>1 can be used to approximate Rice fading
- A distance-dependent path loss (for limiting cases of exponents 2 and 4 analytical results)

[ICCCN13]

- Link outage probability versus node density with different fading "severity" (random layouts)
- To the nth nearest neighbor

 Classical dynamic programming can be used to find the most reliable route within a given deadline from the per-link outages:

$$P_{\rm succ} = \prod \left(1 - P_{\rm out,l}^{x_l} \right)$$

 Providing optimum redundant routes and optimum redundant link schedules is added complexity

 Quantifying reliability gains from multipath nexthop routing in a random network

Node density vs. reliability vs. deadline

 Example: how many hops are optimum to bridge a given distance in a WirelessHART-like setting?

- Motivation
- Reliability analysis of wireless real-time networks
- Performance evaluation tool for wireless CPS
- Study of alternative physical layer technologies for WirelessHART-like networks
- Future work

II. Performance evaluation of wireless CPS

- Need for accurate simulation models for real-time wireless mesh networks
- Reasonable wireless performance models
 - Realistic path loss, correlated fading processes, transceiver impairments, interference, ...
- More efficient simulation than TrueTime or Matlab+ns2
 - 100's of independent Monte Carlo runs should be feasible to get statistically significant results

- Measurements of the industrial channel:
 - Strong line-of-sight component
 - 100 ms-scale coherence times
 - Low delay spread (-> high channel coherence bandwidth)
- Correlation might be adverse in the NCS application
 - WirelessHART uses channel hopping
 - "multi-frequency" channel model needed
- Computationally efficient multipath fading model with independently parametrizable coherence time and coherence bandwidth

- Publish sensor measurement (5 hops)
- Probability of succesful delivery

before the next measurement generated

10 ms time slots

High correlation indeed impacts reliability

- Classic networked control system benchmark
- However, we assume a Model Predictive Controller (MPC)
 - Practical relevance
- 3-hop regular network layout
- Path loss, shadowing and our fading model
- Physical model:
 - Plant: ODE
 - Controller: Simulink-gen.
 - C code

Actuator

- Fixed deadline (6 time slots, 60 ms), metrics:
 - Successful delivery ratio
 - Probability of the step response remaining bounded
- The independent loss model overestimates performance, esp. for significant fading

- Motivation
- Reliability analysis of wireless real-time networks
- Performance evaluation tool for wireless CPS
- Study of alternative physical layer technologies for WirelessHART-like networks
- Future work

Case study: alternative PHY for WirelessHART

- The IEEE 802.15.4 physical layer in WirelessHART is spectrally inefficient
- Not robust under some typical channel conditions
- Alternative designs exist (802.11a) hard to integrate
- IEEE <u>802.15.4g</u> OFDM-based PHY as drop-in replacement for 802.15.4 in WirelessHART?

			1		
Parameter	OFDM Option 1	OFDM Option 2	OFDM Option 3	OFDM Option 4	
Nominal bandwidth (kHz)	1094	552	281	156	ĺ
Channel spacing (kHz)	1200	800	400	200	
DFT size	128	64	32	16	ĺ
Active tones	104	52	26	14	ĺ
# Pilot tones	8	4	2	2	ĺ
# Data tones	96	48	24	12	ĺ
MCS0 (kb/s) (BPSK rate 1/2 with 4x frequency repetition)	100	50	_	_	
MCS1 (kb/s) (BPSK rate 1/2 with 2x frequency repetition)	200	100	50	_	
MCS2 (kb/s) (QPSK rate 1/2 and 2x frequency repetition)	400	200	100	50	
MCS3 (kb/s) (QPSK rate 1/2)	800	400	200	100	
MCS4 (kb/s) (QPSK rate 3/4)	—	600	300	150	
MCS5 (kb/s) (16-QAM rate 1/2)	_	800	400	200	
MCS6 (kb/s) (16-QAM rate 3/4)	_	_	600	300	
					-

- Compares favorably, especially over frequency-selective channels
- Slow, flat fading is still bad
- Side note: can we beat 802.15.4 on highly correlated flat fading channels?
 - 802.15.4g is designed for highly selective channels (very long 24 us cyclic prefix)
 - Delay diversity will be able extract frequency diversity from appropriate 802.15.4g modes
 - Very well suited for 802.15.4g

- Batch reactor Networked Control System benchmark with standard PI controller
- Sensor meas. through 3-hop uplink, wired actuator
- Quadratic error of step response over many realizations

Reference distance d_0	$15 \mathrm{m}$
Reference path loss $L_0(d_0)$	65 dB
Path loss exponent n	3.5
Ricean K factor	6 dB
Shadow fading σ_S	5 dB
Inter-node distance	$80 \mathrm{m}$
Sample size	166 bits

 General challenge: push the envelope of predictability vs. network size to the right

- Research into topology-independent low-power asynchronous MAC schemes
 - "Collision forecasting" based on pseudorandom sequences
 - Adaptable to traffic characteristics
 - Multi-channel operation

- Average link loss probabilities don't tell the whole story
 - Analytic treatment of reliability in wireless real-time networks is possible for rather simple scenarios
 - Overengineering could be reduced by incorporating physical layer data and using better tailored PHY designs
- Wireless real-time networks ought to become more complex in the future
 - Realistic system simulation to enable cross-layer integration

