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Challenges in industrial real-time
networks

Radio frequency spectrum is a scarce resource
Low-range WPAN PHYs vs. state-of-art (WLAN, cellular)

Increasing gap in technology with non-adaptive LR-WPAN schemes

New paradigms (e.g., dynamic spectrum access, better PHY
designs) to allow for the required amount of radio spectrum
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V Motivation

= Science of Integration: requires predictability
Timing (deadlines)
Reliability (probability of successful packet delivery)
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V Motivation

= Go beyond treating the wireless network as ,black box”

= Design goal: maximize the probability of successful packet
transmission within a given deadline (reliability)
= Analyse reliability and delay with realistic environment models
Analytically
Using a realistic system simulation

= Incorporate physical layer realiability information into routing and
scheduling
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V System under study

= Industrial mesh network for sensor (and actuator)
applications
Examples: WirelessHART, ISA 100.11a

Centralized network management
= Pre-planned graph routing
= TDMA-like network scheduling with periodic superframe structure

Low-range wireless personal network physical layer (PHY)
= Typically: IEEE 802.15.4

e

| @—E- | [

ﬁ’." Gateway
' (9
plant WW@ &
SEnsor Field l—

. devices «J Process automation
__ﬁ_'[' controller

Actuator



V Outline

= Motivation
= Reliability analysis of wireless real-time networks
= Performance evaluation tool for wireless CPS

= Study of alternative physical layer technologies
for WirelessHART-like networks

= Future work



V I. Reliability analysis

= Conventional routing approach:
Set up a connectivity graph
Choose (preferably) two independent routes using the two
,best” links; allow for retransmission slots (overengineering)
=, Best” route: highest average ,signal strength”? Lowest
average packet error rate?




V Reliability analysis

= End-to-end reliability is stochastic and highly dependent
on environment and equipment characteristics

= The average packet error rate doesn't say all
= Average link strength tells even less
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V Reliability analysis

= TDMA-like conflict-free scheduling allows
analytical reliability analysis

= Relies on the per-link outage probability
P,.« = Pr[SNR < n]
= Qutage is a practical measure

= Fading parameters can be estimated using
physical layer measurements

= Derived results for known network layouts and
randomly distributed nodes




‘7 Realistic model of wireless -
propagation @

= Nakagami-m channel
Describes a broad class of channel fading
m characterizes the ,,severity” of fading
= m=1 reduces to Rayleigh fading
= m>1 can be used to approximate Rice fading

= A distance-dependent path loss (for limiting
cases of exponents 2 and 4 analytical results)




V Per-link reliability

= Link outage probability versus node density with
different fading ,,severity” (random layouts)

= To the rth nearest neighbor

[ICCCN13]
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V From link to flow reliability

= (Classical dynamic programming can be used to
find the most reliable route within a given
deadline from the per-link outages:

e =T1 (- 7

= Providing optimum redundant routes and
optimum redundant link schedules |s added
complexity o




V Applications to routing

= Quantifying reliability gains from multipath next-
hop routing in @ random network
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‘7 Node density vs. reliability vs.

= Example: how many hops are optimum to bridge
a given distance in a WirelessHART-like setting?

= (line network)
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II. Performance evaluation of wireless -
Y, oPS §1§

= Need for accurate simulation models for real-time
wireless mesh networks

= Reasonable wireless performance models

Realistic path loss, correlated fading processes, transceiver
impairments, interference, ...

= More efficient simulation than TrueTime or Matlab+ns2

100’s of independent Monte Carlo runs should be feasible to get
statistically significant results




E? System-level simulation framework

CPS application model

Network Data link and routing model

Manager
model

Link performance model

Space-time engine
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network schedule design; Generation of channel realizations
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V Realistic channel model

= Measurements of the industrial channel:
Strong line-of-sight component
100 ms-scale coherence times
Low delay spread (-> high channel coherence
bandwidth)

= Correlation might be adverse in the NCS

application

WirelessHART uses channel hopping
,multi-frequency” channel model needed

= Computationally efficient multipath fading model
with indenpendently parametrizable coherence
time and coherence bandwidth



E? Realistic channel model

= Publish sensor measurement (5 hops)
= Probability of succesful delivery
before the next measurement generated

= 10 ms time slots
= High correlation indeed impacts reliability N
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V Case study: batch reactor with
model-predictive controller

= (Classic networked control system benchmark

= However, we assume a Model Predictive
Controller (MPC)

Practical relevance
= 3-hop regular network layout
= Path loss, shadowing and our fading model

= Physical model: @ .
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V Case study: batch reactor with
model-predictive controller
= Fixed deadline (6 time slots, 60 ms), metrics:

Successful delivery ratio
Probability of the step response remaining bounded

= The independent loss model overestimates
performance esp. for S|gn|f|cant fadlng
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V Case study: alternative PHY for
WirelessHART

= The IEEE 802.15.4 physical layer in WirelessHART is spectrally
inefficient

= Not robust under some typical channel conditions

= Alternative designs exist (802.11a) — hard to integrate

= JEEE 802.15.4g OFDM-based PHY as drop-in replacement for

802.15.4 in WirelessHART?
)
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\ ¥4 802.15.4g-based PHY

= Compares favorably, especially e
over frequency-selective
channels Vo (freq. flat)
= Slow, flat fading is still bad Bl
= Side note: can we beat i ===
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E, NCS example w/different PHYs

= Batch reactor Networked Control System
benchmark with standard PI controller

= Sensor meas. through 3-hop uplink, wired
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V Future work

= General challenge: push the envelope of
predictability vs. network size to the right
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V Future work

= Research into topology-independent low-power
asynchronous MAC schemes

,Collision forecasting” based on pseudorandom
sequences

Adaptable to traffic characteristics
Multi-channel operation

ITransmission [] Forecasted collision
Node 1 I I I
0 0 3
[
2
]
Node 2 =
c
I:I I:I 'g 0
2 10 |-
£
Node 3 I 0 I o} >
<
Node 4 I I I
i > 005 01 015 02 025 03 035 04 045 05

Time Average intent interval [s]



V Conclusions

= Average link loss probabilities don't tell the
whole story

Analytic treatment of reliability in wireless real-time
networks is possible for rather simple scenarios

Overengineering could be reduced by incorporating

physical layer data and using better tailored PHY
designs

= Wireless real-time networks ought to become
more complex in the future

Realistic system simulation to enable cross-layer
integration




V Thank you!




