

Remotely Operated Reconfigurable Walker Robots for Eldercare

Paolo Bonato, Co-PI, Spaulding Rehabilitation Hospital, Harvard Medical School H. Harry Asada, PI, Massachusetts Institute of Technology, https://darbelofflab.mit.edu/nri-eldercare/

Over 600,000 elderly people have died of COVID-19; older adults comprise approximately 3 out of 4 COVID-19 deaths. In-person care at home and nursing facilities has been severely impacted, with patient isolation resulting in mental and physical disorders, and even deaths. This project aims to transform in-person care to remote interactive care based on tele-robotics and human-robot systems supported by clinical evaluation.

Challenges

- Provide older adults with support for activities of daily liv without the physical presence of caregivers.
- Balancing and mobility support: develop a novel reconfigurable robot design for safely supporting the bod within a confined space.
- Technology acceptance and engagement: a robotic caregiver must gain a cooperative attitude from older adu in assisting them.

Approach, Innovation, Contributions

- Develop a reconfigurable robot that can provide older adults with a support beam ("handrail") in a spatial location that is most effective for augmenting physical strength and balancing function.
- Human gait is complex, governed by hybrid dynamics.

Impact on Society

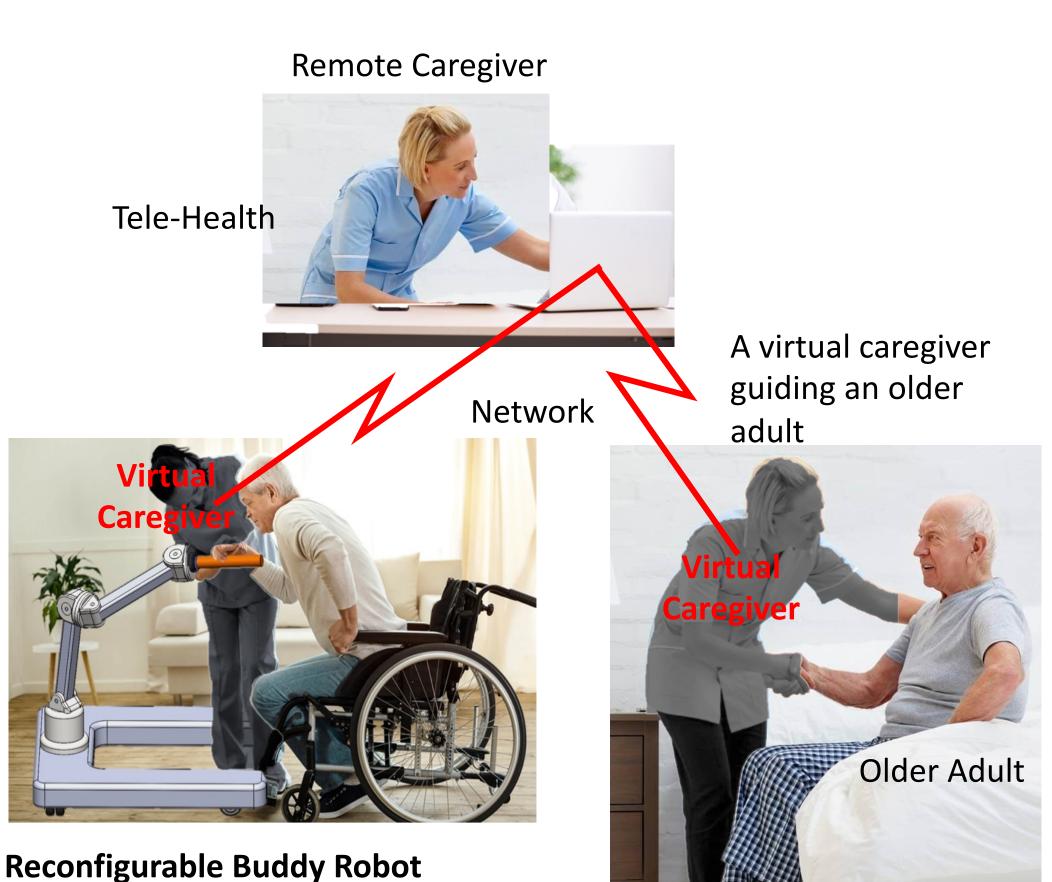
Pandemic-resilient eldercare technology will allow us to deliver needed care safely and effectively to older adults at home and nursing facilities.

Education and Outreach

- Workforce development: Training of caregivers, care managers, and home care service providers.
- Educate technology leaders and users in remote eldercare and telemedicine.

2022 NRI & FRR Principal Investigators' Meeting April 19-21, 2022

	Scientific Impact
/ing	 Model, analyze, and predict the effectiveness of physical aids on musculoskeletal and cognitive functions of older adults.
dy	 Predict and assess human balance and prevent a fall.
ults	 Guide and engage an older adult through verbal and physical interactions and estimate his/her mental state in cooperating with a robotic aid supervised by a remote caregiver.


We aim to establish a global, unified dynamic model based on Dynamic Mode Decomposition to characterize gait stability and predict risk of a fall.

Establish a stochastic model for estimating the mental state of an older adult by observing responses to physical and verbal cues.

Quantifiable Broader Impact

- Reduction of disrupted care services and extended isolation cases of older adults due to pandemics and other factors impacting in-person services.
- The subscription number of workforce development training courses.

Supervised by the remote caregiver

Award ID#: Collaborative Research: NRI: 2133072 / 2133075