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ABSTRACT

As AI systems become pervasive in our daily lives, they may create new opportunities for security
attacks that are hitherto unobserved in classical software and hardware systems. In this report, we
briefly sketch recent advances and opportunities in the security of AI systems. Special emphasis has
been placed on technology gaps in this area, including missing theoretical foundations, desirable
algorithmic advances, and application areas of critical interest.
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1 Introduction

The problem of securing Artificial Intelligence (AI) is increasingly prevalent as the adoption of these systems is expected
in the near future across a vast variety of domains. The consequences of failing to secure such systems is evident in
the autonomous driving sector, where faults in the logic and assumptions of the driving agent have caused accidents
during traffic merging (Ziegler 2016). More significantly and to tragic effect was the fatality caused by the inferencing
module of a Tesla autopilot that failed to recognize a white truck against the bright background sky (Lambert 2016).
In order to address the plethora of security concerns implicit in such failures, it is important to consider the security
of AI across its many stages of operation, including the data collection, architecture design, training time, test time,
and inference time phases. Indeed, the challenges and opportunities for securing AI systems differ across each of the
foregoing. For example, at data collection, there is a risk of data poisoning attacks whereby labels in an existing dataset
can be manipulated to reflect erroneous relationships between input data and the predicted output class (Schwarzschild
et al. 2021). Such attacks can me mitigated to some extent by leveraging techniques from data sanitization (Steinhardt,
Koh, and P. S. Liang 2017).

It is also important to leverage and adapt the fundamental results established in conventional security domains, such
as traditional software testing, where the notion of code coverage as a metric for deriving effective tests has found
powerful analogues for AI systems in the form of neuron coverage. The remainder of this report is organized as follows.
A brief overview of digital attacks and their corresponding defenses is presented in Section 2. This is followed in
Section 3 with a similar treatment of attacks and defenses in the physical domain. Section 4 outlines approaches in the
area of explainable AI that facilitate the interpretation of AI dynamics and outcomes to enable the human end-user to
address security concerns. We conclude and propose future avenues of inquiry for secure AI systems in Section 5.

∗Thanks to the National Science Foundation Secure and Trustworthy Computing (SaTC) Program for supporting the breakout
session at the 2022 NSF SaTC Meeting. This report summarizes a few of the topics on Security of AI discussed at this meeting. The
views and opinions expressed in this article are those of the authors and do not reflect the views of the U.S. government.
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2 Digital Adversarial Attacks and Defenses

Adversarial attacks on modern deep learning systems (I. J. Goodfellow, Shlens, and Szegedy 2014) and more classical
machine learning systems (Ramanathan et al. 2016) have been well studied for nearly a decade now. Suitably-crafted
small and often imperceptible changes to the input cause AI systems to produce different responses on otherwise similar
inputs.

2.1 Attacks on AI Systems

There has been a plethora of digital attacks on AI systems and we make no attempt to create a compendium of the same.
Instead, we highlight a few attacks and then discuss the ongoing work on defending against such digital attacks by
training models that are inherently robust.

2.1.1 Gradient-based Attacks

Popular attacks, such as Fast Gradient Sign Method (I. J. Goodfellow, Shlens, and Szegedy 2014), Basic Iterative
Method (Kurakin, I. J. Goodfellow, and Bengio 2018), Carlini-Wagner (Carlini and Wagner 2017), and the Projected
Gradient Descent, have been deployed in a number of open-source tools, such as Cleverhans (Papernot et al. 2016),
the IBM Adversarial Robustness Toolbox (Nicolae et al. 2018) and TorchAttacks (Kim 2020) . These attacks rely on
the back-propagation of gradients and the optimization engine to identify inputs that cause the model to change its
prediction.

2.1.2 Black-box Attacks

Neural network models deployed as black-box models with no explicit access to the parameters of the model have been
attacked (P.-Y. Chen et al. 2017; Cheng et al. 2018) by explicitly querying the model on multiple parameters, zeroth-
order optimization (J. Chen, Jordan, and Wainwright 2020), or distilling a surrogate model possibly using generators J.
Zhang et al. 2022 and exploiting the transferability of adversarial attacks. In one foundational approach (Brendel,
Rauber, and Bethge 2017), a first adversarial example is obtained by relaxing the norms, and then the norm of the
adversarial example is optimized sequentially.

2.2 Defenses against Digital Adversarial Attacks

Several defenses against digital adversarial attacks have been suggested with varying degrees of success. A few defenses
published in elite venues have been broken by carefully crafted attacks, and certified defenses have allowed one to
reason mathematically about the quality of a proposed defense.

2.2.1 Adversarial Training

Adversarial training (Madry et al. 2017) uses counterexamples generated by attacks and re-trains the model to be
correct on these counterexamples. This is similar to the use of counterexamples to refine abstract models (Clarke
et al. 2000; Sumit K Jha et al. 2007) during the static analysis of software as well as hardware systems. Several clever
algorithms (Wong, Rice, and J. Z. Kolter 2020; Shafahi et al. 2019) that advance adversarial training neural networks
have been proposed.

2.2.2 Certified Defenses

Several algorithms for certifying the robustness of neural networks have been proposed (Raghunathan, Steinhardt, and
P. Liang 2018; Raghunathan, Steinhardt, and P. S. Liang 2018; B. Li et al. 2019). Randomized smoothing has been
investigated and an algorithm for certifying the defense has been popularly used (Cohen, Rosenfeld, and Z. Kolter
2019).

2.3 Future Work

Several interesting directions for future research remain open:

1. There is a need to develop metrics for measuring the robustness of AI models by using metrics aligned with
human perception (L. Zhang et al. 2011; Xue et al. 2013), instead of Euclidean and other purely mathematical
norms.
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2. While a lot of effort has been put into robustness measured by norms, there needs to be a deeper investigation
into the query complexity (Gluch and Urbanke 2021; D. Lee et al. 2022) of adversarial attacks for different
models and associated defenses.

3. AutoAttack and similar tools (Croce and Hein 2020; Croce, Andriushchenko, et al. 2020) have made it much
easier to evaluate the robustness of models without the need to choose multiple attack parameters explicitly.
However, human attackers have often performed much better than automated attack algorithms and there may
be a need to focus on better automation of adversarial attacks as a preliminary evaluation of defenses.

4. The rapid creation of synthetic data (Ramesh et al. 2022; Nichol et al. 2021) allows us to re-visit the defense
of AI models against adversarial attacks. It is likely that models, such as DALL-E 2, trained on large synthetic
data or suitably-crafted synthetic data can provide a new impetus to the design of robust AI models.

3 Physical Adversarial Attacks and Defenses

Physical adversarial attacks refer to attacks that can be applied in the real world, where the input data to an AI
system is collected from sensors such as cameras, microphones, etc. This is in contrast to digital attacks where the
adversary has direct access to the input of the AI system. Different forms of physical adversarial attacks have been
investigated (T. B. Brown et al. 2017; Kurakin, I. Goodfellow, and Bengio 2016). Adversarial objects that can be
3D-printed were demonstrated in Athalye et al. (2017). The use of glasses that can fool facial recognition software has
been illustrated (Sharif et al. 2016). A practical approach may be to create adversarial patches and insert them into the
real world in the form of a sticker (Eykholt et al. 2017).

3.1 Patch Attacks on AI Systems

Patch attacks cause misclasification by introducing a perceptible but spatially constrained change to an image. An
adversarial patch that can be inserted anywhere on an image and cause misclassification to a target class was proposed
in T. B. Brown et al. (2017). Adversarial patches are constructed by a grey patch on multiple input images while
applying transformations such as translation, scaling, and rotation. Next, the pixels of the patch are updated using
iterative gradient decent to maximize misclassification into a target class. Adversarial patches covering only 2% of
the input image were shown to cause misclassification (Karmon, Zoran, and Goldberg 2018) while not being placed
on top of the object in the input image. The use of texture based patch attacks have been investigated (Fernandes and
Sumit Kumar Jha 2020; Yang et al. 2020). The texture and the placement location of the patch are often optimized
using reinforcement learning.

With the rise of vision transformers (ViTs) for image classification, it was speculated that ViTs had inherent robustness
to various attacks. In Fu et al. (2022), it was demonstrated that even ViTs are vulnerable to patch attacks. Recently, to
circumvent patch detection, patch attacks that mimic objects in the natural environment were proposed (Hu et al. 2021).

3.2 Attacks using Natural Perturbations

Another interesting class of attacks is based on inserting natural perturbations like fog, rain, haze, snow, and other
phenomena into the inputs of AI systems (Ozdag et al. 2019). This idea of injecting fake weather has recently been
further developed and implemented in the fakeWeather system Marchisio et al. 2022. There is a need to investigate
more physically realizable attacks using natural perturbations Gao et al. 2021.

3.3 Defences Against Physical Adversarial Attacks

Several successful efforts (Xiang et al. 2021; McCoyd et al. 2020) have been established for defending against patch
attacks. In one methodology, the activations of the neural networks are clipped in order to ensure that a small area of
the input cannot overpower the rest of the input (Yu et al. 2021). Other recent efforts have included certified defenses
against patch attacks (Metzen and Yatsura 2021).

3.4 Future work

Several interesting directions for future research remain open:

1. There is a need to develop automated frameworks for the evaluation of the effectiveness of adversarial patch
attacks and defences. While the APRICOT (Braunegg et al. 2019) and CARLA (Nesti et al. 2022) frameworks
provide a promising starting point, there is an urgent need to develop efficient adaptive attacks.

3



Security for AI

2. Patch attacks often create bright patches that are readily identified by the human visual system. Algorithms for
creating more subtle patches and defenses against the same remain an area of active interest.

3. Natural perturbations like fake weather (Ozdag et al. 2019) require novel metrics for measuring model
robustness to such real-world perturbations. Defenses that focus on such natural perturbations need special
attention for the safety of AI systems employed in autonomous applications like self-driving cars. Defenses
for such attacks using graphs (Acharya et al. 2022) and manifolds (Jang, Susmit Jha, and Somesh Jha 2020)
need to be further investigated.

4 Explainable Artificial Intelligence

Since AI models may continue to be susceptible to adversarial attacks, there is great value in explaining AI decisions
to human experts. This will enable the detection of attacks on high-assurance systems, and a better understanding of
adversarial defenses on the learning dynamics of AI models.

4.1 Enhanced Explanation Algorithms

There has been sustained work on explaining AI decisions for planning, rule-based and expert systems over the last
few decades (Simmons 1988; Hammond 1990; Swartout 1983; Lane et al. 2005; Core et al. 2006). The rise of
neural networks and their susceptibility to attacks has led to a renewed push to better explain the reasoning of neural
networks Lundberg and S.-I. Lee 2017; Shrikumar, Greenside, and Kundaje 2017.

4.1.1 Class Activation Maps

In order to understand the influence of an input component x on a neural network F , the gradient δF
δx serves as an

effective first approximation. The higher the value of the derivative, the more the input influences the neural network.
This idea combined with focusing on specific logits of the neural network and back-propagation through the neural
network has given rise to saliency maps (Simonyan, Vedaldi, and Zisserman 2013) and variants of class activation
maps (Selvaraju et al. 2017; Chattopadhay et al. 2018; Ramaswamy et al. 2020).

4.1.2 Integrated Gradients

Since the training of neural networks often leads to vanishing gradients with respect to the inputs, a path integral in the
input space from a baseline input to the current input has been suggested as an approach for explaining neural networks.
Such integrated gradients attributions have been shown to produce strong axiomatic properties (Sundararajan, Taly, and
Yan 2017). A number of follow-up methods have been suggested for improving integrated gradients (Kapishnikov et al.
2021; Miglani et al. 2020; Pan, X. Li, and Zhu 2021) by focusing on saturation effects and choice of baseline inputs.

4.2 Designing Models for Better Explanations

A more recent phenomenon is the creation and training of AI models with explainability as a design goal. Security of
AI systems may be enhanced and better subject to human audits if their decisions can be better explained.

4.2.1 Adversarial Robust Models

It has been shown that adversarial training leads to more concise explanations of deep neural networks (Chalasani et al.
2020). The relationship between better explanations and robust models has been studied deeply (Datta et al. 2021) for
both in-distribution and out-of-distribution data (Augustin, Meinke, and Hein 2020). Adversarial models often have
lower benign accuracy than traditional models which makes the deployment of such explainable models for security
and explainability reasons less appealing to end users.

4.2.2 Homogeneous and Stochastic Models

The design of models and training methodologies for making more explainable models without directly focusing on
adversarial robustness has also been studied. Inspired by SmoothGrad (Smilkov et al. 2017), neural SDE models have
been shown to create more robust attributions (Sumit Jha, Ewetz, Velasquez, Ramanathan, et al. 2022; Sumit Jha, Ewetz,
Velasquez, and Susmit Jha 2021). Non-negatively homogeneous deep neural networks (Hesse, Schaub-Meyer, and Roth
2021) have been shown to be structurally suitable for computing integrated gradients as the gradients scale linearly with
linear scaling of the inputs.
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4.3 Future Work

1. It has been shown that classical explanations are not well aligned with human intuition (Adebayo et al. 2018).
Creating new methods that can robustly explain AI decisions in different contexts, such as graphs and DeepRL,
may be needed.

2. The DALL-E 2 and similar systems (Ramesh et al. 2022; Nichol et al. 2021) enable the creation of both inputs
and noise models of inputs that can provide novel data sets for training multi-modal explainability models.

3. While there has been some early work on designing better explainable models using non-negatively homoge-
neous models, the space of better explainable models needs to be investigated further. Variants of normalizing
flows may be suited for designing models with enhanced explainability (Cunningham, Cobb, and Susmit Jha
2022).

5 Conclusions and Future Opportunities

5.1 DALL-E 2 and other data generation algorithms

Data augmentation algorithms have traditionally used simple manipulations, such as rotation and cropping of images.
The rise of data synthesis algorithms, using neural SDEs and other diffusion approaches, gives a new opportunity to
design algorithms for designing adversarially robust and secure AI models with better explainability (Ramesh et al.
2022; Nichol et al. 2021). Such ideas could include additional data, adversarial inputs and semantically rich data
augmentation.

5.2 Neuro Symbolic Reasoning

There has been recent progress (Velasquez et al. 2021; Velasquez 2019; Brafman and De Giacomo 2019) in employing
classical symbolic reasoning based on logic and automata to design new AI systems. The use of symbolic algorithms
for reasoning about neural networks and the employment of neural networks for reasoning about symbolic systems
require renewed attention for the design of secure AI systems. It should be highlighted that symbolic methods have
been used for security applications in other software and hardware systems.

5.3 Security Beyond Euclidean Norms

An overwhelming fraction of research into AI security, including adversarial robustness and certified robustness, has
focused on Euclidean and other norms that are easier to manipulate mathematically but have no effective basis in
terms of measuring distances between inputs. The design of secure AI systems for practical deployments must prove
robustness using metrics arising in the domain of application, such as visual-question answering (Walmer et al. 2022).
For example, the distance between images may be captured by measures of human visual perception metrics (Setiadi
2021; Fan et al. 2019).

5.4 AI vs. Other Software and Hardware

Several attacks and defenses used in software and hardware systems have also been employed for AI applications with
suitable modifications and justifications. There is a need to clearly delineate the threat model so as to focus clearly on
the security of AI systems that exploit the additional attack surface created by data-driven deep learning and other AI
systems.

5.5 New Applications: Social Networks and Malware Analysis

Securing AI systems used in social networks and malware analysis can have a profound effect on the security of
our society. AI-assisted analysis of malware is a growing area of investigation (Abdelsalam, Gupta, and Mittal
2021; Or-Meir et al. 2019; Stamp, Alazab, and Shalaginov 2021); however, there is a need for a more open research
cyber-infrastructure that brings together experts in AI and malware analysis.

Recent foundational work has been performed on the analysis of social networks (Oh and Kumar 2022; Yue et al. 2021;
Anelli et al. 2022), with a focus on the robustness of graphs (Freitas et al. 2022). Metrics for adversarial robustness and
similarity in AI systems used for analyzing social networks remain areas with great potential.
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