
1

Resiliency-Aware Deployment of SDN in Smart
Grid SCADA: A Formal Synthesis Model

A H M Jakaria∗, Mohammad Ashiqur Rahman†, and Aniruddha Gokhale‡
∗Department of Computer Science, Tennessee Tech University, Cookeville, USA

†Department of Electrical and Computer Engineering, Florida International University, Miami, USA
‡Department of Computer Science, Vanderbilt University, Nashville, USA

Email: ∗ajakaria42@students.tntech.edu, †marahman@fiu.edu, ‡a.gokhale@vanderbilt.edu

Abstract—The supervisory control and data acquisition
(SCADA) network in a smart grid requires to be reliable and
efficient to transmit real-time data to the controller, especially
when the system is under contingencies or cyberattacks. Intro-
ducing the features of software-defined networks (SDN) into a
SCADA network helps in better management of communication
and deployment of novel grid control operations. Unfortunately,
it is impossible to transform the overall smart grid network to
have only SDN-enabled devices overnight because of budget and
logistics constraints, which raises the requirement of a systematic
deployment methodology. In this paper, we present a framework,
named SDNSynth, that can design a hybrid network consisting
of both legacy forwarding devices and programmable SDN-
enabled switches. The design satisfies the resiliency requirements
of the SCADA network, which are determined with respect
to a set of pre-identified threat vectors. The resiliency-aware
SDN deployment plan primarily includes the best placements
of the SDN-enabled switches (replacing the legacy switches).
The plan may include one or more links to be installed newly
to provide flexible or alternate routing paths. We design and
implement the SDNSynth framework that includes the modeling
of the SCADA topology, SDN-based resiliency measures, re-
siliency threats, mitigation requirements, the deployment budget,
and other constraints. It uses satisfiability modulo theories
(SMT) for encoding the synthesis model and solving it. We
demonstrate SDNSynth on a case study of an example small-
scale network. We also evaluate SDNSynth on different synthetic
SCADA systems and analyze how different parameters impact
each other. We simulate the SDNSynth suggested networks in
a Mininet environment, which demonstrate the effectiveness of
the deployment strategy over traditional networks and randomly
deployed SDN switches in terms of packet loss and recovery time
during network congestions.

Index Terms—SDN architecture; incremental deployment;
smart grid; SCADA; formal modeling; network synthesis

I. INTRODUCTION

SMART grids are large, heterogeneous, and distributed in
nature, where the maintenance of a large number of intelli-

gent end devices is required. This task is complex and requires
careful management. The SCADA network infrastructure of
a smart grid needs to be reliable and efficient to transmit
a large amount of real-time data [1]. The observability of
a grid bus system is determined by the successful delivery
of critical measurements collected by the end devices to
control centers. The overall network should be resilient to
cyberattacks to ensure seamless transmission of control and
measurement data from all the devices that provide sensitive

data to retain system observability. However, the end devices
and the network forwarding devices can get compromised,
which leads to severe quality issues in the smart grids.

Current network infrastructures in SCADA systems use
diverse protocols and heterogeneous forwarding devices [2].
These protocols and devices make the management, main-
tenance, and integration of new devices difficult. Software-
defined networking (SDN) has great potential to be used
in SCADA systems [3]. It not only provides flexibility to
implement novel networking solutions and quality of service
(QoS) optimization but also provides greater resiliency to
cyberthreats [4], [5].

However, the primary challenge for solutions built on SDN
in an enterprise network is the deployment problem. Net-
work upgrades in any enterprise are budget and resource-
constrained. It is impractical to substitute all the legacy
switches with SDN switches overnight. The process of si-
multaneous deployment and operation of legacy and SDN-
enabled switches remains one of the greatest challenges in
incorporating SDN to smart grids. The already deployed
traditional switches and routers need to be replaced with SDN
switches systematically, so that the hybrid network can still be
benefited by the features of SDN.

The problem of deployment of SDN satisfying grid ob-
servability constraints within a limited budget is a recent
topic and is generally an NP-hard one [6], [7]. Utilizing
the available limited budget (e.g., a limited number of SDN-
enabled switches), while perceiving the benefits of SDN, is
challenging. We propose to formally model the constraints
and requirements into a constraint satisfaction problem (CSP)
and solve it using a CSP solver to generate the SDN-enabled
network architecture for the SCADA. We present an automated
framework, SDNSynth, which solves this problem using for-
mal verification.

We aim to resolve security challenges by providing re-
siliency to the SCADA network. We use vulnerable sets of
electronic devices that form various threat vectors (as identi-
fied in [8]). The network can be resilient to attacks if proper
communication between the devices and the control center
can be ensured, despite attacks, such that the center receives
necessary measurements to observe the complete system . The
observability can be ensured through secure and alternative
communication of the remote devices utilizing the benefits of
SDN. However, the available SDN switches are required to

2

be properly placed so that it is possible to reroute control and
data traffic and set up virtual networks whenever needed.

SDNSynth provides an automated tool for synthesizing
SDN switch placements, as well as topology extension through
new link deployment, using constraint satisfaction checking. It
takes the existing network topology, security requirements, and
physical resources as inputs and formulates the deployment
problem. We solve the problem by encoding the model into
first-order logic. We use SMT in the encoding purpose, which
also provides us a solution if there is any, in the form of the
deployment plan for SDN switches. The major contributions
of this paper include:

1) Formal modeling of the resiliency requirements, re-
source constraints, and network topology that imple-
ments SDN.

2) Designing a framework that can efficiently generate the
candidates for SDN switch placements (replacing the
legacy switches) and new link deployments (topology
extension) that improve the resiliency of the SCADA
network by satisfying all the requirements and con-
straints. To the best of our knowledge, this work is
the first of its kind that designs the SDN topology
with respect to the observability analysis of smart grid
SCADA systems.

3) Implementing a tool based on the framework and a
thorough evaluation of its performance.

4) Simulating the network suggested by the tool in a
Mininet-based virtual environment.

We briefly introduced SDNSynth in [9]. Although the
research considers SCADA as the problem domain, the process
of simultaneous deployment and operation of legacy and SDN-
enabled switches remains as one of the greatest challenges
in general. The proposed framework is generic enough to be
used for SDN deployment problems in cyber and other cyber-
physical systems (CPSs).

The rest of this paper is organized as follows: Section II
presents an overview of SDN, its impact on smart grids,
and the related works. We discuss the framework of the
proposed solution in Section III. Section III also describes the
formal model, while the implementation and a case study are
discussed in Section IV. The evaluation results of our model
are presented in Section V. Section VI concludes the paper.

II. BACKGROUND AND RESEARCH OBJECTIVE

A smart grid is a combination of power grids, communi-
cation networks, and information management systems. The
SCADA system is a core component of a smart grid. It consists
of heterogeneous smart devices, such as intelligent electronic
devices (IED), programmable logic controllers (PLC), remote
terminal units (RTU), master terminal units (MTU), control
servers, routing and security devices, etc [10]. These devices
communicate with each other under various communication
protocols, physical media, and security properties. A SCADA
network analyzes real time data about power generation,
flow, distribution, and consumption in power grid systems.
The controllers use this analysis to maintain critical energy
management operations, such as state estimation, automatic
generation control, etc.

A. SCADA Security Issues

In a SCADA network, security can become an issue in many
different ways. The following includes some examples:

• In case several critical smart devices such as IEDs, RTUs
or PLCs get compromised, the overall network becomes
vulnerable to cascading attacks [11]. The system may not
be observable if a critical set of measurements cannot
reach the control center.

• Forwarding devices (routers/switches) can be compro-
mised in a stealthy way. In these cases, the attack might
not be detected and cannot be mitigated easily. This
yields to unwanted packet delay, which can lead to
synchronization issues and performance degradation of
overall controls [12]. This can also bring down routes
in dedicated networks and create congestion, which ulti-
mately results in valid packet drops.

• False command and other data injection is another se-
curity issue in SCADA [13]. This can cause incorrect
system estimations and control decisions, which leads to
infrastructure damages, as well as power outages.

B. Software-Defined Networking

In a data communication network, many hosts share a
network infrastructure, which consists of many routing or
switching devices. Most of the time, these routing devices
are closed systems and have very limited or vendor-specific
configuration interfaces. Once deployed and in production, it
is very hard to reconfigure the network and introduce novel
applications or new versions of existing protocols. SDN has
been developed to decouple the data plane in a network
infrastructure from the control plane [14]. A programmatic
controller performs the logic to reroute and manage the traffic
by communicating with simple forwarding devices, known as
SDN-enabled switches. When a packet arrives at such a switch,
it extracts some packet header fields and matches against some
flow-table entries. If a match is found, the packet is forwarded
or dropped according to the action specified in the entry.
Otherwise the packet or some features of the packet are sent to
the controller. The controller instructs the switch to add a new
flow-table entry and perform forwarding accordingly. This is
made possible by a protocol named ‘OpenFlow’ [15]. This
mechanism reduces the network effectively to consisting of
simple forwarding hardware devices and one or a few decision-
making controllers.

C. SDN and SCADA Resiliency

SDN can impact the SCADA resiliency mainly by its ability
to perform traffic engineering, which cannot be done with
legacy switches or routers flexibly. For example:

• Rerouting data, whenever the system is required to bypass
a router/device because it is compromised, is made easier
by SDN. During the times of unavailability of normal
routes due to failure or attack, fast rerouting is possible
utilizing SDN, which allows controllers to take routing
decisions more quickly than traditional routing algo-
rithms. Alternate paths for data ensure greater resiliency
to the grid system [16].

3

• SDN can be used to establish alternate or dynamic paths
for grid control commands and other data from the control
center. The commands can be transmitted from a control
center to grid devices exactly at the required moments.
This approach significantly reduces the time-window in
which the attacker can inject malicious commands [17].

• If there are any compromised switches or control devices,
it is easier for SDN to isolate the nodes from the routing
topology through the usage of VLANs. In this way, the
network of intelligent devices in the smart grid remains
resilient to cyberthreats.

• In a smart grid, there are different types of data and
control flows that have different levels of criticality [18].
SDN can also dynamically prioritize the packet flows in
the case of congestion/denial of service attacks in the
network. SDN can impose rules on the switches to set up
a priority for relaying these packets efficiently [19].

• SDN allows switching to public network with proper
encryption, when the dedicated network for SCADA is
unavailable [17].

D. Research Objectives

In this paper, we aim to answer the following questions:
1) Where and how many SDN switches and links should be
deployed to achieve specific traffic engineering goals given
budget and resource constraints? 2) Is there a trade-off
between the cost of SDN deployment and system resiliency?
3) Is the bus system observable after deploying the SDN
components, even in the cyberattack scenarios to some extent?

To answer these, we devise a tool to strategically select
a subset of legacy devices in an existing SCADA network
and replace them with SDN. The research addresses the
following many-fold objectives: 1) upgrade the existing net-
work with SDN-enabled switches within the available budget;
2) synthesize the SDN topology with newly available links
within the budget, which enhances network resiliency; 3)
achieve successful and resilient observability, given sufficient
measurement delivery from IED to MTU, which leads to
successful state estimation.

E. Related Works

There are several works available that introduce the usage
of SDN techniques in smart grids. Chekired et al. presented a
model for energy management in smart grids based on cloud-
SDN architecture [20]. Jin et al. and Ren et al. presented the
impact of SDN on microgrid resiliency [21], [22]. Cahn et al.
proposed that software-defined networking can alleviate many
of today’s problems regarding setup complexity to security
policies in energy communication networks (ENC) and create
a network, which can evolve with changing technologies and
needs [3]. Zhang et al. presented three use cases to examine
the opportunities for SDN technology in smart grid [4]. These
use cases include enhancing data exchange, virtual network for
distributed energy resources aggregation, and smart building
energy management. Feamster et al. clarified the relationship
of SDN with several common network technologies such as
network virtualization [23].

An SDN-based approach to modernize the SCADA sys-
tems was investigated by Da Silva et al. [24]. The authors
simplified the management of power system resources, as
well as designed a mechanism to prevent eavesdroppers from
capturing communication flows between SCADA components.
In [25], the authors proposed an intrusion detection system
that utilizes SDN and characteristics of SCADA for traffic
classification. Dong et al. investigated how SDN can enhance
the resilience of typical smart grids to malicious attacks. They
also identified additional risks introduced by SDN and how to
manage them [17]. However, none of the above works discuss
the gradual deployment plan of SDN-enabled switches in a
hybrid network scenario.

A few works are available for the incremental deployment of
SDN in enterprise networks. One of the most typical solutions
is to divide the data flows through two different domains: one
is SDN switches and another is legacy switches. The main
problem with this approach is that some packets get treated
by the SDN controller via the SDN switches, while some
others do not. This approach prevents an enterprise to realize
the ultimate benefits of SDN. Several manual heuristic based
algorithms have been devised to determine the locations of
the limited number of SDN switches [6]. Hong et al. sys-
tematically studied the incremental SDN deployment problem
by formulating it as an optimization problem and proposed
effective heuristics for selecting a small set of existing devices
for upgrading [6]. They formulated the SDN deployment
problem as an optimization problem and showed that it is
still NP-complete. Hence, they developed several simple but
effective heuristics to tackle it.

An incremental deployment strategy using a heuristic al-
gorithm was proposed by Xu et al. [7]. The authors aimed
for throughput maximization in routing. They applied a depth-
first-search method and a randomized routing mechanism to
solve the routing problem in a hybrid SDN environment.

A genetic algorithm was developed by Guo et al. to deter-
mine the sequence of migration of legacy routers to SDN,
which provides the most benefits from the perspective of
traffic engineering [26]. Their approach minimized the total
maximum link utilization, which is subject to constraints
such as link capacity, total amount of incoming and outgoing
flows on a node, etc. They demonstrated that this algorithm
performed better than a greedy and static approach that was
also proposed by them.

Levin et al. presented the design and implementation of
an architecture called Panopticon for operating networks that
combine legacy and SDN switches [27]. Panopticon exposes
an abstraction of a logical SDN in a partially upgraded
legacy network, where SDN benefits can extend over the
entire network. They also formalized an optimal cost-aware
upgrade algorithm based on mathematical programming [28].
A solution for seamless peering between SDN and existing
IP networks with the deployment of new SDN features was
studied by Jonathan et al. [29]. Effective use of SDN for traffic
engineering, while SDN is incrementally being deployed, was
discussed by Agarwal et al. [30]. Das et al. used a slicing pane
between the SDN switches and the controller to partition the
data plane into multiple slices which are controlled by different

4

Threat
Vectors

Resiliency
Requirements

SDN Switch
Placement Model

Available SDN-
enabled and

legacy switches

Connectivity
Requirements

Resource
Model

Bandwidth
Requirements

Available
Links

Constraints
Model

SMT
Solver

Network
Topology

Fig. 1. The framework architecture of SDNSynth.

controllers [31]. This also helped in the gradual deployment
of SDN.

Poularakis et al. study the gradual upgrade of an ISP
network to include SDN-enabled switches [32]. They focused
on maximizing the traffic flowing through the SDN-switches
and the number of dynamically selectable alternate paths while
considering the cost. They do not consider the criticality of the
sources of traffic, which is a key factor in our study.

None of these existing works solve the problem from the
smart grid observability point of view. They do not solve
the multi-objective NP-hard problems of generating an SDN
topology with grid resiliency in mind. We aim to solve the
deployment problem while maintaining the resiliency of the
SCADA network.

III. SYNTHESIS OF SDN DEPLOYMENT NETWORK

This section first discusses the framework of our proposed
resiliency-aware deployment model. It also provides the formal
modeling of the requirements and the constraints of the SDN-
enabled network architecture. Table I lists several variables
used in the model. It is notable that no multiplication of
two parameters is performed in the paper without using the
multiplication sign.

A. SDNSynth Framework

In energy management system (EMS), optimal power flow
(OPF) is dependent on a core routine called ‘state estima-
tion’ [33], [34]. A smart grid computes currents, voltages,
phase angles, transmission line power flow, loads at the
buses, etc. [35]. These measurements are used to estimate a
number of power system state variables. A Jacobian Matrix
represents the relationship between the measurements and the
state variables [36]. The state estimation can be vulnerable to
false data injection, or the unavailability of required data, in
the case of an adversary being able to alter or eliminate some
measurements without being detected [37].

Rahman et al. proposed a mechanism for automatic syn-
thesis of a secure set of measurements and intelligent de-
vices, with respect to a list of security requirements (i.e.,
expected attack model [8]). Their framework can identify
the most critical measurements, based on a given set of

attacker capability. From this work, we will use threat vectors,
which are basically sets of IEDs, as our input to SDNSynth.
The devices in the threat vectors are related to vulnerable
measurements and are considered to be critical. SDNSynth
ensures the delivery of measurements from these critical end
devices by placing SDN-enabled switches on their paths to
the control center. The security and resiliency requirements,
considered in this work, will ensure that a SCADA control
process receives sufficient data (i.e., measurements from field
devices) to perform its operation even in limited contingencies.
We ensure the observability analysis, which is a prior and
crucial requirement for state estimation of the power system
control routine [38].

SDNSynth follows a top-down architecture design automa-
tion approach instead of the traditional bottom-up approach.
The major features of SDNSynth are as follows:

• Formally models the network topology, required config-
urability (i.e., SDN features) of switches by the controller,
and resource constraints.

• Formalizes the incremental SDN design synthesis prob-
lem as the determination of deployment decision of SDN
switches, new links, and their placements that satisfy the
given requirements and constraints.

• Encodes the synthesis problem into SMT logics and
provides a feasible solution using an SMT solver and
following a hill-climbing approach.

The SDNSynth architecture is shown in Fig. 1. SDNSynth
takes the following as inputs: (i) security requirements and
threat vectors, (ii) the network topology including bandwidths
of the links, which constitute the observability model of the
network, and (iii) available SDN switches and links that can
replace the traditional switches, which make up the resource
model. The tool takes input from a user using an input file.
The output of the tool indicates the best possible candidates for
switch replacements, as well as the new links that should be
deployed in the network according to availability and budget.

SDNSynth will be run by network operators whenever
they have adequate budget for the deployment of new SDN
switches. The tools takes all the existing switches/routers (both
SDN-enabled and traditional) into account, and produces a sat-
isfiable solution, if any, satisfying the resiliency requirements.

B. Preliminary of Formal Model

While designing a hybrid topology consisting of SDN-
enabled switches, we need to ensure the communication of
critical devices (i.e., IEDs) with the MTU by ensuring alternate
paths from them to the MTU. SDN switches can be instructed
by the controller to change the behavior of routing based
on certain scenarios. For example, if a route fails because
of some router/device/link failure, there can be congestion
in the available routes. In these cases, we need to ensure
the traffic from the most critical devices, instead of all the
devices. Distinguishing between traffic from different sources
is much easier with programmable switches than traditional
routers [39]. If the IEDs themselves are down or compromised
and an attacker can find sensitive data through it, we can stop
the flow of any data to and from it by instructing the SDN

5

TABLE I
NOTATION TABLE

Notation Definition
Node𝑖 Whether node (IED) 𝑖 is available.
P𝑖 The set of all possible paths from IED 𝑖

to MTU.
p𝑖,𝑦 The 𝑦th path from IED 𝑖 to the MTU.
d𝑖,𝑦 Set of all forwarding devices on 𝑦th path

from IED 𝑖.
Link𝑙 If link 𝑙 is up.
SwitchIsSDN𝑠 If switch 𝑠 is SDN-enabled.
AssuredAltPath𝑖 Whether there are alternate paths from

IED 𝑖 to MTU.
AssuredBandwidth𝑖 Whether adequate bandwidth is assured

for IED 𝑖.
AssuredDelivery𝑖 Whether data delivery is assured from

IED 𝑖 to the MTU.
VlanEnablingSwitch𝑠 If switch 𝑠 can create a VLAN.

switches. We also need to ensure the adequate bandwidth for
each link in the communications paths, so that data from all
end devices sharing the path are not clogged up. We aim to
also retrieve a deployment plan for the newly available links.

Throughout the model of the network synthesis, for sim-
plicity, we have used the sum of boolean variables to formally
model several constraints. While encoding the summation
of boolean variables, we have created corresponding integer
variables (0 or 1) and used their sum for calculation.

C. Observability

The power system is observable when the measurements
collected by IEDs can solve a list of unknown state variables.
The observability of a smart grid ensures three conditions:
(i) the unique measurements collected by the IEDs are suc-
cessfully delivered to the MTU, (ii) the measurements can
cover all the unknown state variables, and (iii) the number of
these measurements is greater than or equal to the number of
variables [8].

𝑘−Resilient Observability: This constraint verifies that if 𝑘

field devices (e.g., IEDs) are unavailable, whether observabil-
ity is still ensured. A device is unavailable when it fails to
communicate with the MTU due to its technical failure or
remote attacks on it or on the communication path toward the
destination. We can find out if there is a set of devices, no more
than 𝑘 in number, which can make the system unobservable
when they are unavailable. This set is a threat vector that
entails that the system is not 𝑘−resilient. If there is no such
threat vector, then it is 𝑘−resilient observable [8]. If Node𝑖
denotes whether node 𝑖 (an IED) is available, a threat vector
(V) represents the set of devices for which the following
statement is true in the case of unobservability: ∀𝑖∈V¬Node𝑖 .
In other words, if all the devices (IEDs) in a threat vector are
unavailable simultaneously, the system will be unobservable.

Let 𝑁 be the number of end devices. The 𝑘−resilient observ-
ability constraint (¬ResilientObservability) can be formalized

as follows:

((𝑁 −
∑︁

1≤𝑖≤𝑁
Node𝑖) ≤ 𝑘) ∧ ¬Observability

→ ¬ResilientObservability

After finding out the threat vectors, we need to make sure
that the communication path from at least one device in each
threat vector is ensured in the case of an attack. The user
can specify the required percentage of threatened devices
that need to be protected. The communication between a
field device (i.e., IED or RTU) and the MTU is dependent
on the communication routes (links) and the intermediate
devices (RTUs or routers). We need to ensure that there are
adequate number of alternate paths from these IEDs to the
MTU. Our goal is to secure the paths taken by these critical
measurements by suggesting alternate paths. SDN switches
ensure a better way to reconfigure the network in the case of a
switch/router failure or network congestion. If SDN switches
can be deployed on the paths to ensure alternate paths for
critical measurements to be delivered from IEDs to MTU, the
network would be much more resilient to threats.

D. Priority Management

Algorithm 1 Priority Assignment Algorithm
1: for each IED 𝑖 do
2: 𝑟𝑎𝑛𝑘 [𝑖] B 𝜔 ∗ NUMSENSORACTUATOR(𝑖) + 𝜔 ∗∑

𝑣 ISINVECTOR(𝑖, 𝑣)
3: 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦[𝑖] B 0 ⊲ initialize priorities of all IEDs with 0.
4: end for
5: 𝑚𝑎𝑥𝑅𝑎𝑛𝑘 B MAX(rank)
6: 𝑐ℎ𝑢𝑛𝑘𝑆𝑖𝑧𝑒 B 𝑚𝑎𝑥𝑅𝑎𝑛𝑘/𝑛𝑢𝑚𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑇𝑦𝑝𝑒

7: for each priority type 𝑝 do
8: 𝑠𝑡𝑎𝑟𝑡 B 𝑝 × 𝑐ℎ𝑢𝑛𝑘𝑆𝑖𝑧𝑒.
9: 𝑒𝑛𝑑 B (𝑝 = 𝑛𝑢𝑚𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑇𝑦𝑝𝑒) ? 𝑚𝑎𝑥𝑅𝑎𝑛𝑘 : (𝑠𝑡𝑎𝑟𝑡 +

𝑐ℎ𝑢𝑛𝑘𝑆𝑖𝑧𝑒)
10: for each IED 𝑖 do
11: if INRANGE(rank[i], start, end) then
12: ASSIGNPRIORITY(priority[i], p)
13: end if
14: end for
15: end for
16: return 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦

In a SCADA environment, there are some smart devices
such as IEDs that collect data from the grid. These may
perform the collection with the help of sensors such as
ammeter, flowmeter, etc. The data is forwarded to RTUs or
PLCs depending on the type required. The RTUs send the data
to the central control center or the MTU. In the other direction,
the control center sends necessary commands to the IEDs with
the help of RTUs. Some IEDs are connected to actuators such
as a circuit breaker. The actuators perform the changes that are
required in the grid. The IEDs that have sensors or actuators
with them are of high priority. Any communication involving
them must be ensured in order to maintain the grid operations
without any error.

Another criterion for measuring the criticality of devices
is how vital their collected data is. There are hundreds of
thousands of measurements collected by smart devices. Some
IEDs are less critical as the measurements they collect are

6

not unique, i.e., some other IEDs report the same or related
measures. Hence, they are not individually crucial to estimate
the corresponding state variable. The IEDs collecting unique
measurements are the most critical ones as, without these
measurements, state estimation cannot solve for some state
variables. Hence, the criticality of an IED inversely depends
on the extent of redundancy (i.e., alternatives). These critical
IEDs are more prominent in the successful attack vectors [8].
It is essential to ensure that any critical device must be
able to communicate with others, as long as they are not
compromised.

In Algorithm 1, we devise a method to determine the
criticality/priority of the field devices. The rank of an IED
increases if it has some attached sensors or actuators. The rank
also increases if it is an element of one or more sets of threat
vectors. 𝜔 is the impact of the number of sensors/actuators
in calculating the rank of the IEDs, while 𝜔 is the impact
of the existence of an IED in the threat vectors. These have
values between 0 and 1, which impact the calculation of the
ranks of the IEDs. The rank is used in calculating the priorities
of the IEDs. The algorithm returns the priorities of the IEDs
according to the number of priority types specified by the user.
For example, we can define three levels of priorities for the
IEDs: high, medium, and low. When modeling the resiliency
requirements of the devices, the order of the devices follow
the priority of them. That means, the devices in the threat
vectors having higher priority will be ensured more alternate
paths and other resiliency features before others.

E. Resiliency Management
Here we present our model according to several SDN

benefits in the management of security and resiliency of
SCADA networks.
Alternate Paths: First, we define alternative paths for the
IEDs. In calculating alternate paths from an IED to an MTU,
we consider 𝛼-Alternative paths, where 𝛼 means the percent-
age of overlapped/shared links on the paths. If a path contains
less than 𝛼% of common links with another path, it can be
considered as an alternate to the other one.

We consider all possible forwarding paths from an IED 𝑖

to the MTU, through one or more RTUs, as P𝑖 . A path p𝑖,𝑦
is defined as the 𝑦th path among all possible paths. p𝑖,𝑦 is a
set of links, while each link 𝑙 represents a pair of nodes that
belong to the set L ⊆ N × N, assuming that L is the set of
links and N is the set of all nodes.

Let I be the set of all IEDs in the threat vectors. If
AltPath𝑝𝑖,𝑦 , 𝑝𝑖,𝑦′ denotes that path p𝑖,𝑦′ is an alternate path for
p𝑖,𝑦 , then:

∀𝑖∈I∀𝑝𝑖,𝑦 , 𝑝𝑖,𝑦′ ∈P𝑖AltPath𝑝𝑖,𝑦 , 𝑝𝑖,𝑦′ →
(
∑︁

𝑙∈𝑝𝑖,𝑦
𝑙 ∈ 𝑝𝑖,𝑦′) ≤ (|𝑝𝑖,𝑦′ |×𝛼) (1)

Next, we find the switches that split a path of an IED
to create multiple alternate paths. If S is the set of all
candidate switches to be replaced by SDN-enabled ones
and L𝑠 is the set of all links connected to switch 𝑠, then
SwitchOnAltPathBranchs ensures that switch 𝑠 is positioned
where two or more alternate paths for IED 𝑖 branches.

SwitchOnAltPathBranchs →
AltPath𝑝𝑖,𝑦 , 𝑝𝑖,𝑦′ ∧

∑︁
𝑙,𝑙′∈L𝑠

(
(𝑙 ∈ 𝑝𝑖,𝑦) ∧ (𝑙 ′ ∈ 𝑝𝑖,𝑦′)

)
≥ 1 (2)

SDN-Enabled Switches: SDN-enabled switches should be
deployed intelligently on the network branches. We want the
SDN-enabled switches to be deployed on the alternate paths
for the IEDs. Also, they should be deployed at the forks of
the paths, so that SDN controller is able to route the data and
command packets to and from IEDs efficiently, and according
to priority. We define such alternate paths as software-defined
alternate paths, SDAltPath𝑝𝑖,𝑦 , 𝑝𝑖,𝑦′ . If SwitchIsSDN𝑠 denotes
whether switch 𝑠 is SDN-enabled or not, di,y is the set of all
switches on the 𝑦th path from IED 𝑖 to the MTU, and di,y′ is
the set of all switches on path 𝑦′, the following should hold:

∀𝑖∈I∀𝑝𝑖,𝑦 , 𝑝𝑖,𝑦′ ∈P𝑖 SDAltPath𝑝𝑖,𝑦 , 𝑝𝑖,𝑦′ →
AltPath𝑝𝑖,𝑦 , 𝑝𝑖,𝑦′ ∧ ∃𝑠 (𝑠 ∈ 𝑑𝑖,𝑦) ∧ (𝑠 ∈ 𝑑𝑖,𝑦′) ∧
SwitchIsSDN𝑠 ∧ SwitchOnAltPathBranchs

(3)

∀𝑖∈I AssuredMinAltPath𝑖 → (Priority𝑖 = m) ∧
∀𝑝𝑖,𝑦 (1 +

∑︁
𝑦′

SDAltPath𝑝𝑖,𝑦 , 𝑝𝑖,𝑦′ ≥ minAltPath𝑚) (4)

If 𝑚 is the priority of IED 𝑖 obtained from Algorithm 1, in the
Equation 4, minAltPath𝑚 is a constant specifying the minimum
number of alternate paths that need to exist between IED 𝑖 and
the MTU. Each path p𝑖,𝑦 , for an IED 𝑖 with priority 𝑚, should
have at least minAltPath𝑚 alternate paths p𝑖,𝑦′ .

Different number of alternate paths may be specified for dif-
ferent levels of priorities. For example, at least five alternative
paths should be deployed for high priority communications,
while low priority devices may require at least two alternate
paths, for each of its paths to the MTU.

All the links in the communication paths and their alternate
paths need to be deployed and up. If Link𝑙 is a boolean variable
denoting whether a link is up or not,

∀𝑖∈IAssuredLinksOnAltPath𝑖 →
SDAltPath𝑝𝑖,𝑦 , 𝑝𝑖,𝑦′ ∧ ∀𝑙∈p𝑖,𝑦Link𝑙 ∧ ∀𝑙′∈p𝑖,𝑦′Link𝑙′

(5)

AssuredMinAltPath𝑖 and AssuredLinksOnAltPath𝑖 ensure the
existence of alternate paths from IED 𝑖 to the MTU.

∀𝑖∈IAssuredAltPath𝑖 →
AssuredMinAltPath𝑖 ∧ AssuredLinksOnAltPath𝑖

(6)

If altPathExp denotes the expected percentage of IEDs to
have assured alternate paths, then the following should hold:∑

𝑖 𝐴𝑠𝑠𝑢𝑟𝑒𝑑𝐴𝑙𝑡𝑃𝑎𝑡ℎ𝑖

|I| ≥ altPathExp (7)

Bandwidth Requirements: Bandwidth is an issue when
rerouting a large amount of data in the SCADA network. We
consider the alternate paths when calculating the bandwidth
requirements. The shared links on the paths need to be of
high enough bandwidth to allow the traffic from the sharing
devices through them. It is not desirable to clog up a certain
link by redirecting all packets through a certain path. It is
important to ensure that there is at least one path from an
IED to the MTU that has enough bandwidth on each link

7

so that the data collected by that IED can safely reach the
destinations. Let delData𝑖 be the data to be delivered from
IED 𝑖. AssuredBandwidth𝑖 assures the required bandwidth:

∀𝑖∈IAssuredBandwidth𝑖 ↔
∃p𝑖,𝑦 ∈P𝑖∀𝑙∈𝑝𝑖,𝑦bandwidth𝑙 ≥

∑︁
𝑖

𝑑𝑒𝑙𝐷𝑎𝑡𝑎𝑖
(8)

At this point, we model the assured delivery of data from
IED 𝑖 to MTU. If it is assured that there is at least one SDN-
enabled switch on the path from an IED to the MTU, and there
are some assured alternate paths between the communicating
parties, we conclude that data delivery is assured from that
IED to the MTU. The bandwidth on all links on at least one
of the paths must also be assured. We formalize this as follows:

∀𝑖∈IAssuredDelivery𝑖 → SDAltPath𝑝𝑖,𝑦 , 𝑝𝑖,𝑦′ ∧
AssuredBandwidth𝑖 ∧ AssuredAltPath𝑖

(9)

F. Virtualization and Isolation

SDN offers the capability of network virtualization, which
can group intelligent devices into logically isolated virtual
networks. Virtualization can also isolate different flows of data,
which makes it easier to perform separate control on traffic
with different interest [40]. Virtualization technologies, such as
VLANs or VPNs also become feasible using SDN, as tedious
and error-prone work of configuring of individual switches to
create virtual networks is eliminated. SDN enables this process
to be automated because an overlay network built on SDN can
be reconfigured quickly according to software instructions [4].

VLANs can help to isolate different parts of a SCADA
system. For example, the historian and the HMI machines
in the control center may have more tendency to connect to
the Internet. These groups of devices can be isolated using
a VLAN from all other devices that need to be hidden from
potential attack networks. Again, groups of vulnerable and
critical devices may be required to be scanned using a system
such as IDS [41]. The IEDs in the threat vectors are also good
candidates to be in VLANs, as they can be secured through
their private networks. VLANs can be configured to scrutinize
all packets from these devices by passing them through such
a detection technology. One other use of VLANs can be
to isolate any known compromised devices from the core
network, so that they cannot infect the other devices easily.
SDN gives us the benefit of dynamically creating these VLANs
as per the requirements of a smart grid SCADA network.

Let Vlan𝑣 be the 𝑣th VLAN in the SCADA network,
which is basically a set of IEDs. For simplicity, we assume
that if a switch is connected to an IED that is in any
VLAN, it is considered to be a VLAN enabling switch. If
VlanEnablingSwitch𝑠 indicates whether switch 𝑠 can enable a
VLAN for one of its connected hosts, and S𝑣 denotes the set
of switches for VLAN 𝑣, the following holds:

∀𝑣∀𝑖∈Vlan𝑣 ∀𝑠∈S𝑣 VlanEnablingSwitch𝑠 → Link𝑖,𝑠 (10)

The union of all the switches in all VLANs should be a
subset of the set of all the switches:

⋃
𝑣 S𝑣 ⊂ S. If a switch

needs configuration for putting an IED under a VLAN, that is,

if it is a VLAN enabling switch, it should be an SDN switch.

∀𝑠∈SVlanEnablingSwitch𝑠 → SwitchIsSDN𝑠 (11)

It is obvious that the number of available SDN switches
is limited and might not be enough to create all the VLANs
that we require. We define Q𝑣 as the ratio for a VLAN as
the number of SDN-enabled switches to the total number of
switches in that VLAN.

Q𝑣 =

∑
𝑠∈S𝑣 SwitchIsSDN𝑠

|S𝑣 |
≤ 1 (12)

If vlanExp indicates the expected percentage of implement-
ing the desired VLANs specified by users in the input file and
𝑉 indicates the total number of VLANs, then,∑

𝑣 Q𝑣

𝑉
≥ vlanExp (13)

G. Resources and Budget Constraints

It is important in an SDN environment that any communi-
cation is supervised by the SDN controller. This means that
any packet from a source must traverse through at least one
SDN switch on its way to the destination. Let ESwitchIsSDN𝑠

denote an already existing SDN switch 𝑠 and DSwitchIsSDN𝑠

be the deployable new SDN switch. The following should hold
about the already existing switches or routers and the newly
deployable SDN-enabled switches.

SwitchIsSDN𝑠 → ESwitchIsSDN𝑠 ∨ DSwitchIsSDN𝑠 (14)

(ESwitchIsSDN𝑠 → ¬DSwitchIsSDN𝑠) ∧
(DSwitchIsSDN𝑠 → ¬ESwitchIsSDN𝑠)

(15)

Similarly, if DLink𝑙 denotes a newly deployed link that does
not exist and need to be set up, then,

Link𝑙 → ELink𝑙 ∨ DLink𝑙 (16)

(ELink𝑙 → ¬DLink𝑙) ∧ (DLink𝑙 → ¬ELink𝑙) (17)

The total budget, TOT_AVAIL_BUDGET , hence the number
of available SDN-enabled switches and links are limited. It is
not possible to replace a greater number of switches than the
total available SDN switches. That is, the sum of all deployed
SDN switches and links must be less than what we have in
budget. This can be represented by the following constraint,
given c𝐿𝑖𝑛𝑘𝑙 represents the deployment cost of new DLink𝑙
and c𝑆𝐷𝑁 denotes the cost of each SDN switch:

(
∑︁
𝑙

DLink𝑙) × c𝐿𝑖𝑛𝑘𝑙 + (
∑︁
𝑠

𝐷𝑆𝑤𝑖𝑡𝑐ℎ𝐼𝑠𝑆𝐷𝑁𝑠) × c𝑆𝐷𝑁

≤ TOT_AVAIL_BUDGET
(18)

IV. PROTOTYPE IMPLEMENTATION OF SDNSYNTH AND
AN EXAMPLE CASE STUDY

The main objective of our configuration synthesis problem
is to synthesize the network topology for implementation of
SDN by satisfying various requirements as well as the business
constraints of a SCADA network in smart grids. Thus, the
synthesis problem is formalized as the satisfaction of the
conjunction of all the constraints specified in section III.

8

A. Target Variables in the Model

We implement our model by encoding the system configura-
tion and the constraints into SMT logics [42]. In this encoding
purpose, we use Z3, an efficient SMT solver [43]. We use
boolean terms for encoding the boolean configuration param-
eters and decision variables like SDN switch deployments. The
remaining parameters are modeled as integer or real terms.

The solver checks the verification constraints and provides
a satisfiable (sat) result if all the constraints are satisfied.
The sat result provides a sat instance, which represents the
value assignments to the parameters of the model. According
to our objective, we require the assignments to the following
variable: the decision variable referring to whether a switch is
SDN-enabled, SwitchIsSDN𝑠 , i.e., the placement of the SDN-
enabled switches. The other target variable is DLink𝑙 , which
represents if link 𝑙 should be deployed or not. The values of
these parameters are printed in a text file (output file).

Although the solution using the Z3 solver may not always
provide an optimal solution, it can provide solutions that are
very close to optimal. In the evaluation results, we show the
required number of SDN switches and links from the tightest
possible constraints that provide sat results. In fact, when we
start with a budget too low, it will provide unsat results. When
we keep increasing the budget at little quantities at a time, at
some point, it will provide a sat solution if all other constraints
satisfy. This solution is very close to optimal. It is also possible
to create a binary-search-based algorithm that can provide the
best solution among many available ones. As the problem in
this research is a combinatorially hard problem, an efficient
solution is required for acceptability. Z3 is one of the most
efficient solvers of formal models.

B. A Synthetic Pedagogical Case Study

Fig. 2(a) shows a small network of a 14-bus SCADA sys-
tem. It consists of 26 IEDs, 13 RTUs, and 1 MTU. There are
18 traditional routers connecting these intelligent devices. Here
we present three case studies, as demonstrated by SDNSynth.
The input file consists of the network topology, the number
of possible new links, the data generated by the IEDs, etc. It
also includes 8 threat vectors where each is a set of IEDs, the
expected percentage of threat mitigation (75%), average cost
of new SDN switches ($2000), the available budget ($35,000),
the desired VLANs specifications, the expected alternate path
percentage for critical devices (70%), etc.

A Satisfiable Case Study: First, we determine the 𝑘-resiliency
of the SCADA network, which means the network is resilient
to less than any 𝑘 IED failures [8]. In other words, the
system is still observable if less than 𝑘 IEDs fail to deliver
their measurement data to the MTU. The system becomes
unobservable if an attacker is capable of compromising equal
to or more than 𝑘 devices at a time. The value of 𝑘 in our
first network in Fig. 2(a) is 4, which means that it is 3-device
resilient. In other words, the network can sustain up to 3 IED
failures. If the attacker is capable of compromising up to 4
devices, this scenario yields 1 threat vector consisting of 4
devices; whereas, for a 5-device failure we get 8 different

TABLE II
THE INPUT TO THE CASE STUDY

Number of IEDs (1-26), RTUs (27-39) and Routers (40-57) (1 MTU (58) is
assumed)
26 13 18
IED generated data rate (Gbps)
2 1 1 2 2 3 4 1 2 1 1 2 2 3 4 1 2 1 1 2 2 3 4 1 3 4
Number of links in topology
58
Communication links (among the IEDs, the RTUs, and the MTU)
From - To - Bandwidth (Gbps)
1 40 5
2 40 5
27 40 10
3 41 10
28 41 10
4 42 5
5 42 5
6 42 5
29 42 10
7 43 5
.
52 56 10
57 58 10
Number of possible new links in the network topology according to budget
6
Possible new links
From - To - Bandwidth (Gbps)
44 55 10
45 47 10
47 57 10
.
52 57 10
Number of threat vectors for the current topology
8
Threat vectors (all the IEDs in each individual set cannot be compromised at once)
13 14 15 16
11 12 24 25 26
3 4 5 6 8
12 14 17 18 25 26
17 18 20 21 22 23
11 12 20 21 22 23
1 2 11 12 25 26
1 2 3 4 9 10
Expected threat vector mitigation percentage
75
Avg cost of SDN switch ($)
2000
Cost of new links ($)
900 1100 1150 850 1050 950
Available budget ($)
35000
Number of desired VLANs
3
Desired VLAN sets
1 2 4 9
5 6
10 11 23
Expected percentage of SDN-enabled switches to be in the desired VLANs
50
Expected alternate path percentage for critical devices
75

threat vectors. We use the 8-threat vector scenario for our first
case study. Table II shows the input file used in this case.

In this case, we have a budget of $35,000. The SDN-enabled
switches should replace some of the traditional routers. The
price of each new SDN-enabled switch and deployment cost
of new links are provided in the input file. The amount of
data generated by each of the IEDs is also provided, which
is required to comply with the throughput of the links on its
path to the MTU. For our 8 sets of threat vectors, the attacker
has a capability of attacking at most 5 intelligent devices at a
time. One of the threat vectors consists of IEDs 13, 14, 15 and
16, which means that if all of these IEDs are failed together
due to an attack, then the system will be unobservable.

We would like to mitigate at least 75% of the threat

9

TABLE III
OUTPUT TO THE EXAMPLE

We have a solution
Routers required to be replaced with SDN-enabled ones
Router_ID Deployed?
40 True
41 False
42 True
...
54 False
...

All existing and deployed links:
Source Dest Status New?
1 40 True False
2 40 True False
...
48 53 True True
...
Required time (ms): 5392.85

G

1

G

G

G

G

6

5

1
4

1
3

1
2

1
1

1
0

9
8

7

4

3

2

MTU 58

27

40

2
1

30

43

8
7

33

46

15
14

32

45

13
12

28

41

3

29

42

5
4

6

31

44

10
9

11

34

47

17
16

35

48

19
18

36

49

21
20

37

50

22

38

51

24
23

39

52

26
25

53

54

55

56

57#

#

#

IED

RTU

Traditional
Router/Switch

Existing
links

(a)

G

1

G

G

G

G

6

5

1
4

1
3

1
2

1
1

1
0

9
8

7

4

3

2

MTU 58

27

40

2
1

30

43

8
7

33

46

15
14

32

45

13
12

28

41

3

29

42

5
4

6

31

44

10
9

11

34

47

17
16

35

48

19
18

36

49

21
20

37

50

22

38

51

24
23

39

52

26
25

53

54

55

56

57#

#

#

IED

RTU

Traditional
Router/Switch

Existing links

New links

#
SDN-enabled
Switch

(b)

Fig. 2. (a) Traditional SCADA network in Smartgrid with legacy switches,
(b) SDN network with Smartgrid after deployment of SDN-enabled switches.

vectors through the creation of VLANs and placement of
SDN-enabled switches in this case study. We have a limited
budget and 6 possible new links. Given all the constraints
and requirements, SDNSynth generates multiple solutions for
the provided input. The users may choose one solution that
optimizes any particular parameter according to their require-
ments using a binary-search-based hill-climbing approach.
One of the solutions, in this case study, tells the user to
replace the routers 40, 42, 43, 44, and so on. Router 57 is
also among the suggested replacement list, as it is almost
on all possible alternate paths from an IED to the MTU.
Fig. 2(b) demonstrates this scenario. Moreover, new links
between switch 44 and 55, 45 and 47, 47 and 57, 52 and

57, and so on, are suggested. This solution provides a close-to-
minimal number of switches and links required to be deployed
to meet the requirements. If the threat mitigation requirement
was less than 75%, SDNSynth might have provided a solution
with even less number of SDN switches.

The proposed network topology ensures required band-
widths in each link from any IED to the MTU. It ensures
alternate paths for critical IEDs according to the percentage
of expected IEDs having alternate paths. These paths enable
the SDN controller to reroute any critical data to and from the
IEDs in the case of any link or device failure. It also ensures
the forming of VLANs with critical IEDs by providing SDN-
enabled switches. The controller can create VLANs utilizing
the SDN-enabled switches with the IEDs that need to be
secured from the compromised ones. It can also be used to
isolate compromised devices. SDNSynth provides a software-
defined network architecture (within the given capacity) that
ensures that the percentage of IEDs in VLANs exceeds the
expected specification of 75%.

Listing 1 presents an excerpt of the Z3 code generated by
SDNSynth. It shows a few of the expressions that assert the
constraints according to our resiliency model 1.
1. assert(=> AssuredBw_1 and((>= Bw_1_40 2)

(>= Bw_40_44 2) (>= Bw_40_44 2)
(>= Bw_44_55 2) (>= Bw_55_57 2) (>= Bw_57_58 2)))

2. assert(>= 35000
(+ (* ((+ (SDNSwitchCount_1 SDNSwitchCount_2 ...

SDNSwitchCount_18))) 2000)
(* ((+ (NewLinkCount_1 SDNSwitchCount_2 ...

SDNSwitchCount_6))) 1000)))
3. assert(=> AssuredAltPath_1

and (AssuredMinAltPath_1 AssuredLinksOnAltPath_1))
4. assert(=> AssuredAltPath_2

and (AssuredMinAltPath_2 AssuredLinksOnAltPath_2))
...

Listing 1. Sample Code

A Case with Increased Attacker Capability: In this case,
we envision an attacker with more attacking capability, which
means the number of threat vectors will increase proportion-
ally. For 6 IED failures, the number of threat vectors increases
to 42, where each vector can consist of as many as 6 IEDs.
We keep the budget same and verify the model. With these
constraints and requirements, SDNSynth generates an unsat-
isfiable result. This means that with the existing budget and
the attacker capability, deployment of SDN-enabled switches
may not be sufficient to repel the attacks.

Next, we increase the budget to $50,000. The number of
possible links is also increased. This time SDNSynth provides
a solution that tells the user to replace the routers 40, 41, 42,
43, 44, and so on. Routers 56 is also among the suggested
replacement list. New links between switch 44 and 55; 47 and
54; 48 and 53; 55 and 57; 52 and 57; etc. are suggested, which
makes the system more resilient by providing alternate paths
for critical IEDs.
A Case with a Different SCADA Topology: Here we use
a different SCADA topology than the one in Fig. 2(a) for a
14-bus test system. We generate the topology using a different
14-bus connectivity (lines) for the buses. The links between
router 44 and 53; 48 and 55; and 42 and 54 are not available

1https://github.com/jakaria42/SDN_Topo_Synth.git

https://github.com/jakaria42/SDN_Topo_Synth.git

10

in this network. Instead, there is a link between 42 and 57. For
this network, we get a 2-device resiliency, which means the
network is vulnerable to as low as 3-IED failure. We consider
an attacker to compromise at most 4 IEDs together. We get a
threat vector count of 3 for this. From the results provided by
SDNSynth, we observe that at least 12 SDN-enabled switches
and all the 4 available new links are required to acquire a
satisfiable solution. Also, we need a budget of at least $28,000.

V. EVALUATION

In this section, we present the evaluation results show-
ing the relationships between different network deployment
parameters, such as the number of newly deployed SDN-
enabled switches and links, available budget, threat vector
mitigation requirements, etc. We also present the scalability of
the proposed framework with respect to the SCADA systems.
Lastly, we present a network simulation along with its results
that depict the effectiveness of out proposed methodology.
To the best of our knowledge, there is no other work that
solve the same deployment problem with the resiliency of
SCADA in mind. Hence, we do not present any comparison
of performance with any existing technique.

A. Methodology

To evaluate SDNSynth, we run experiments on different
SCADA network topology for different bus sizes in smart
grids. We created synthetic networks based on the line connec-
tivity of the buses and power flow and line measurements. We
ran the program on a machine equipped with Windows 10 OS,
an Intel Core i7 processor and 16 GB memory. We evaluate the
scalability of the verification model by the analysis of the time
requirements for executing the model in different scenarios.
It is worth mentioning that the number of intelligent devices
(IEDs and RTUs), as well as the routers and links are not
fixed for a specific bus size for a SCADA system. However,
their numbers are generally proportional to the bus sizes.
We generate the SCADA networks based on different sizes
of IEEE test systems, i.e., 14-bus, 30-bus, 57-bus, and 118-
bus [44]. The communication paths from an IED to the MTU
are formed randomly considering several routers/switches.

B. Relationships of Deployment Parameters

The intention behind Fig. 3 and Fig. 4 is to show that the
parameters used in our model relate to each other as expected.
This entails the correctness of the model. In this analysis, the
resultant numbers of SDN-enabled switches and links are the
minimum numbers of switches and links possible with the
tightest possible constraints.

Fig. 3(a) shows the relationship between the number of
threat vectors and the minimum number of deployed SDN-
enabled switches. We observe from the graph that the number
of SDN switches increases with the threat vectors. For 60%
threat mitigation requirement, the number of IEDs in the threat
vectors that are required to be resilient, is less than that of
90%. As a result, we need fewer SDN-enabled switches for
the 60% case than the 90% case. For example, when we need

to mitigate only 60% of 42 threat vectors, 20 new switches
are required, whereas, 31 switches are required to mitigate
90%. Fig. 3(b) shows similar results for newly deployed links.
In Fig. 3(c), we present the minimum required budget for
different numbers of threat vectors in the SCADA system of a
57-bus grid. More budget is required to mitigate more threats
for a certain number of threat vectors. A requirement of 90%
threat mitigation requires more budget than the 60% case.

In Fig. 3(d), we show the results for different existing
network topologies of a 30-bus SCADA system. We change
the average degree of the existing routers, where the degree
of a router refers to the number of links attached to it. We
observe that the number of required new switches decreases
as the degree increases. For higher degrees of routers, there are
already higher numbers of alternate paths. Hence, it requires
less number of SDN-enabled switches to be resilient to threats.

Fig. 4(a) shows the percentage of threat vectors that can
be mitigated with different amounts of budgets. We show
two cases for 42 and 431 threat vectors for the same 57-
bus SCADA network. As anticipated, a greater fraction of
threat vectors can be mitigated with more budget by deploying
enough new SDN-enabled switches and links. In Fig. 4(b),
we present the percentage of VLAN creation possibility of
the desired total VLANs. For a certain budget, when the
total number of desired VLANs is 25, the percentage of
fulfillment is less than that of expected VLAN count of 10.
In Fig. 4(c), we demonstrate the number of deployed SDN-
enabled switches, as well as the number of newly deployed
links, with respect to the total available budget for 14 and 30
bus systems, while other parameters such as threat mitigation
requirement etc. remain the same. As the available budget
increases, the number of newly deployed SDN switches and
links also increases slowly. The resource constraints are re-
sponsible for this increase, as SDNSynth tries to find a solution
utilizing the available budget. New links ensure the proper
rerouting of data for critical devices. Proper positioning of the
SDN switches allows rerouting, as well as creation of VLANs
with a particular group of IEDs.

We also vary the total number of devices in the 30-bus
SCADA system, and observe the number of deployed SDN-
enabled switches in Fig. 4(d). We do this for 8 and 42
threat vectors while keeping the threat mitigation requirement
constant at 60%. The number of SDN switches increases very
slowly for different sizes of the network, if the number of
threat vectors, budget, threat mitigation requirement, and other
parameters remain the same.

C. Scalability
We evaluate the scalability of SDNSynth by analyzing

the time required to synthesize the network topology by
varying the problem size and other parameters. The synthesis
time includes the model generation time and the constraint
verification time. All the times are measured for producing
an efficient result by the SMT solver. While there are other
greedy heuristic-based approaches available for incremental
deployment, they do not address the same problem as ours.
Moreover, greedy solutions are prone to get stuck in a local
minima or maxima, while SDNSynth provides efficient results.

11

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

1 3 8 42 431

#
D

ep
lo

y
ed

 S
D

N
-e

n
ab

le
d

 s
w

it
ch

es

#Threat vectors

#Threat vectors vs #Deployed SDN switches for 57 bus

60% threat mitigation
90% threat mitigation

(a)

 0

 2

 4

 6

 8

 10

 12

1 3 8 42 431

#
D

ep
lo

y
ed

 n
ew

 l
in

k
s

#Threat vectors

#Threat vectors vs #Deployed new links for 57 bus

60% threat mitigation
90% threat mitigation

(b)

20k

40k

60k

80k

1 3 8 42 431

M
in

 r
eq

u
ir

ed
 b

u
d

g
et

 (
$

)

#Threat vectors

#Threat vectors vs budget for 57 bus

60% threat mitigation
90% threat mitigation

(c)

 2

 4

 6

 8

 10

 12

 14

4 5 6 7 8

#
S

D
N

-e
n

ab
le

d
 s

w
it

ch
es

Avg. degree of routers

Avg. Degree of router vs #SDN-enabled switches for 30 bus

Budget = $25k
Budget = $35k

(d)
Fig. 3. (a) Number of required SDN switches w.r.t. number of threat vectors, (b) number of required new links w.r.t. threat vectors, (c) required budget w.r.t.
threat vectors, (d) number of required SDN switches w.r.t. avg. router degree.

 20

 30

 40

 50

 60

 70

 80

 90

 100

40k 44k 48k 52k 56k 60k 64k 68k 72k

T
h

re
at

 v
ec

to
r

m
it

ig
at

io
n

 (
%

)

Budget ($)

Budget vs threat mitigation for 57 bus

#Threat vector = 42
#Threat vector = 431

(a)

 20

 30

 40

 50

 60

 70

 80

 90

 100

40k 44k 48k 52k 56k 60k 64k 68k 72k

E
x

p
ec

te
d

 V
L

A
N

 p
er

ce
n

ta
g

e
(%

)

Budget ($)

Budget vs Expected VLAN percentage for 57 bus

#VLAN = 10
#VLAN = 25

(b)

 5

 10

 15

 20

 25

32k 40k 48k 56k 64k 72k 80k

 2

 4

 6

 8

 10

 12

 14

#
D

ep
lo

y
ed

 S
D

N
-e

n
ab

le
d

 s
w

it
ch

es

#
D

ep
lo

y
ed

 l
in

k
s

Budget ($)

Budget vs number of SDN switches and links

#SDN switches for 14 bus
#SDN switches for 30 bus

#Links for 14 bus
#Links for 30 bus

(c)

 10

 12

 14

 16

 18

 20

85 98 110 122

#
S

D
N

-e
n

a
b
le

d
 s

w
it

c
h

e
s

#Devices (IED+RTU+Routers)

#Devices vs #SDN-enabled switches for 30 bus

8 threat vectors
42 threat vectors

(d)
Fig. 4. (a) The percentage of threat vector mitigation w.r.t. budget, (b) the expected VLAN percentage w.r.t. budget, (c) number of SDN switches w.r.t. budget,
and (d) number of SDN switches w.r.t. number of devices in SCADA.

Impact of Bus Size: The model synthesis time with respect
to the varying bus size is shown in Fig. 5(a). Two scenarios,
one for satisfiable results and another for unsatisfiable results,
are presented in the graph for 8 threat vectors. We observe
that the required time increases in somewhere between linear
and quadratic orders with the increment of bus size. The
execution time differs for sat and unsat results for a specific
bus size. The unsat results usually take more time than sat
ones. As the bus size increases, the number of constraints and
requirements increase rapidly. For this reason, we observe such
timing (almost quadratic) for obtaining a result.

Impact of SCADA Network Size: We also observe the model
synthesis time by varying the number of devices (IEDs, RTUs,
and routers) in a 30 bus network, while keeping the number of
threat vectors constant in Fig. 5(b). We observe the time for
scenarios with 8 and 42 threat vectors by increasing the num-
ber of devices from 58 to 101. We generate different numbers
of devices by changing the average number of measurements
per device in the same bus system. It was observed that the
time increases almost linearly with the increase of the number
of devices. As the number of available devices increases, the
problem size increases in terms of the number of possible
deployment positions of SDN-enabled switches. Verification
of more constraints is required as the model size increases;
hence, more time is required to reach a solution.

Impact of Threat Vectors: In Fig. 5(c), the time taken by the
Z3 solver was measured for a varying number of threat vectors,
where the number of threat vectors is almost quadratically
proportional to the capability of an attacker. For a certain bus
size, as the number of threat vectors increases, the number of
Z3 clauses to verify also gradually increases. For a certain
number of threat vectors, the difference is not too much
between 14 and 30 bus systems. It is worth mentioning that
the 𝑥-axes for Fig. 3(a) through Fig. 3(c) and Fig. 5(c) are not
linear and displayed without scale.

Impact of Budget: Fig. 5(d) shows the impact of budget on
the network synthesis time. We can observe that if the bus and
SCADA size, threat vectors, as well as all other requirements
are kept constant, the tool requires almost similar times for
synthesizing the network. The network size is larger for the
57 bus than the 30 bus. As a result, there are more constraints
to solve, hence it takes more time to provide a satisfiable result.

D. Experiments on Mininet-based Virtual SCADA Testbeds
We simulate the SCADA networks of different IEEE test

bus systems with both legacy and SDN-enabled switches. We
use Mininet version 2.2.2 [45] in VirtualBox 5.2.0. Mininet is
a open-source network emulator virtual machine that runs a
real kernel, switch and application code. It creates a network
of virtual hosts, switches, controllers, and links. Mininet hosts
run standard Linux network software. It creates realistic virtual
networks consisting of both legacy switches and SDN-enabled
switches supporting OpenFlow. We configure the network of
the Mininet VM to contain a host-only network interface,
which lets us SSH into Mininet from the host system. We run
the ‘Xming’ server on a Windows host machine to enable X11
forwarding, which facilitates the launch of network monitors
such as Wireshark, xterm, etc. We use a python application
called ‘Miniedit’ within Mininet which lets the user to use a
graphical interface to create networks. This application can
also export the topology to customize the behavior of the
network, such as using remote controllers running at a certain
IP address and port.

Although Mininet has its default OpenFlow reference con-
troller, we use a remote Floodlight controller [46]. Floodlight
is a Java-based OpenFlow controller for enterprise networks
distributed under Apache license. We use the latest master
version of Floodlight with Java 8. It utilizes the collabora-
tion between two modules named LinkDiscoverManager and
TopologyService to be aware of the topology, and automati-
cally learns about networks with loops and alternate paths in

12

 10

 20

 30

 40

 50

 60

 70

 80

5 14 30 57 118

T
im

e
 (

s)

#Bus

Bus vs time

Unsat
Sat

(a)

 5

 6

 7

 8

 9

 10

 11

 12

 13

58 64 72 81 92 96 101

T
im

e
 (

s)

#Devices (IED+RTU+Routers)

#Devices vs time (30 bus)

#Threat vector = 8
#Threat vector = 42

(b)

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

1 3 8 42 431

T
im

e
 (

s)

#Threat vectors

#Threat vectors vs time

14 bus
30 bus

(c)

 5

 10

 15

 20

 25

 30

40k 44k 48k 52k 56k 60k 64k 68k 72k

T
im

e
(s

)

Budget ($)

Budget vs Time

#Bus = 30
#Bus = 57

(d)
Fig. 5. The model synthesis time w.r.t. (a) bus size, (b) number of devices, (c) number of threat vectors, and (d) available budget.

(a)

 0

 20

 40

 60

 80

 100

 120

14 bus 30 bus

R
es

p
o

n
se

 t
im

e
(m

s)

Switch forwarding time for 14 bus and 30 bus SCADA

No SDN switch
Randomly deployed SDN switches

SDNSynth-based switch deployment

(b)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 2 4 6 8 10 12 14 16 18 20

R
es

p
o

n
se

 t
im

e
(m

s)

Time since congestion (s)

Response time of httping while in ’recovery’ mode (30 bus)

Traditional routers
Randomly Deployed SDN switches
SDNSynth deployed SDN switches

(c)

 0

 20

 40

 60

 80

 100

14 bus 30 bus

P
ac

k
et

 l
o

ss
 r

at
io

 (
%

)

Packet loss ratio while in ’recovery’ mode

No SDN switch
Randomly deployed SDN switches

SDNSynth-based switch deployment

(d)
Fig. 6. (a) Sample 5 bus SCADA network in Miniedit environment of Mininet with both SDN-enabled and legacy switches, (b) Node forwarding time in terms
of avg. response time of Ping commands, (c) Comparison of response time of ‘httping’ while recovering during congestion for different types of networks
(30 bus), and (d) Packet loss ratio while recovering from congestion for different types of networks.

the network. Floodlight specifies a protocol which is utilized
by a remote controller to modify the behavior of networking
devices, such as Open vSwitches, through a well-defined
‘forwarding instruction set’. We run Floodlight on a separate
VM and connect it to Mininet through the host-only network.

Simulation Environment Specifications: To host the virtual
machines, we use a computer with Windows 10 64-bit operat-
ing system with Intel(R) Core(TM) i5 670 3.47 GHz processor,
and 12 GB of RAM. The Oracle VirtualBox VM manager
manages the Mininet Emulator on a Linux operating system
of Ubuntu 14.04.4-server-i386 32 bit, with 1 GB of memory.
It also manages the Floodlight VM on Linux operating system
Ubuntu 14.04.1 64 bit with 1 GB of memory.

Experiment Setup and Results: In our simulation, we specif-
ically present three experiments to show the effectiveness of
SDN in networks such as SCADA, as well as the role of
SDNSynth in creating a resilient network infrastructure. In this
experiment, we deploy three network simulation scenarios in
Mininet: one without any SDN-enabled switches, one with ran-
domly deployed SDN-enabled switches, and lastly SDNSynth
suggested deployment of SDN switches and links. For the
randomly deployed SDN topology scenario in Fig. 6(b) and
6(d), we took the average resultant metric from 30 randomly
created topologies. For Fig. 6(c), we plot the median of the
30 curves generated from the random runs.

1) Switch Forwarding Speed: We compare the speed of
forwarding switches/routers in network scenarios for 14 bus
and 30 bus systems. To do this, we compute the response time
of Ping command between two hosts in the network, which
are assumed to be an IED and the MTU. Fig. 6(a) shows
an example network for a 5 bus system in Miniedit of the
Mininet VM, where host 1 is an IED which is an element of
a threat vector for the network, while host 13 is the MTU.
The response time is mainly composed of link delay, packet
forwarding time, and routing table or flow table querying and

matching time. We set the link bandwidth to 10 Mbps, link
delay to 15 ms, and the packet loss rate in the links to 0.

Fig. 6(b) shows the observation for average response time
of the Ping packets for each of the three scenarios. In 14 bus
system SCADA network, the response time is almost the same
for all scenarios, whereas in 30 bus system, the difference
is much more observable. As the network size increases,
the benefits of the software-defined network become more
apparent. In both the cases, SDNSynth suggested topology
performs better than the topology where SDN switches are
randomly deployed.

In traditional network, with the expansion of the network
size, the size of the routing table also increases considerably.
The routing table is queried for each incoming packet after it
has been established. In SDN-enabled network, only the first
packet in a flow needs extra time to make a round trip from
the controller, then the flow-tables are updated in the switch,
which are much simpler and smaller in size for similar network
topology. This causes the forwarding speed of Open vSwitches
in SDN networks to be much faster. Moreover, SDNSynth
proposes the strategic deployment of switches to ensure that
most of the packets are dispatched through the SDN-enabled
Open vSwitches.

2) Communication Time While Routing Recovery for Re-
silient Networks: To calculate the communication time, we
consider both the latency of the network and the webserver.
We use a tool named ‘httping’ [47] that can measure the time
to connect to a webserver, send a request and retrieve the
reply. We set up a simple http server on a host in the Mininet
network that acts as an MTU. The hosts acting as field devices
such as IEDs use ‘httping’ to communicate with the MTU.

In this experiment, we show the benefits of priority-based
routing in SDN-enabled switches. We create three different
networks of similar topology with SDNSynth suggested Open
vSwitches, randomly deployed Open vSwitches, and only
traditional routers. We consider some hosts (IEDs) in the

13

networks having higher priority than others, as they are part
of threat vectors, as discussed in Section III-C. All the hosts
acting as IEDs are active and perform continuous communi-
cations with the MTU. When the network is established, we
manually create some link failures to simulate a congestion.
We take some direct links of the high priority IEDs down, so
that the traffic from them are rerouted through alternate paths.
The bandwidth of the links is set to 10 Mbps and the delay
is set to 30 ms. In the Open vSwitches, we manually set high
priorities for the flows from IEDs that have higher priority by
executing commands like the following from the CLI:

sh ovs-ofctl add-flow s1 priority=1500,dl_type=0x800,

nw_src=10.0.0.1/24,nw_dst=10.0.0.1/24,actions=normal

Fig. 6(c) shows the communication times between a high
priory host (IED) and the server host (MTU) recorded by
‘httping’ when the network is in ‘recovery’ mode. The graphs
show the communication times for the first 20 seconds since
the link failures occurred. Fig. 6(c) shows the results for
a network for 30 bus with 90 switches/routers. The results
show that the systematic deployment of SDN-enabled switches
offers much faster recovery for high priority end devices in
case of congestion in the network. In randomly deployed
SDN networks, the response time for the httping packets is
higher than a systematically deployed network. In traditional
networks, the switches do not have the option of dynamically
setting up priories for certain hosts in the network. As a
result, traditional networks show much higher communication
times during congestion situations. It can be observed from
the graphs that the benefit of SDNSynth deployment is much
more apparent in the larger network of 30 bus. The larger the
network is, the better SDNSynth suggested networks do than
the other two deployments.

3) Packet Loss Ratio For Resilient Networks: We use the
same experimental set up as described in Section V-D2, except
that we increase the link delay in the networks to 50 ms, which
causes a considerable amount of packet loss in traditional
networks. We calculate the packet loss ratio for a high priority
host (IED) in the case of a congestion created by a manual link
failure. It is calculated as the ratio of lost packets to the total
transmitted packes. Figure 6(d) shows the average packet loss
ratio for the first 100 pings after the congestion is created. We
use the ‘fping’ tool to control the time-out period and measure
the loss ratio [48]. It can be observed that the packet loss
ratio for SDNSynth suggested network is much lower than the
other two scenarios. As SDNSynth deploys Open vSwitches
in such a manner that most of the packets should pass through
the Open vSwitches, the number of lost packets is decreased.
These switches prioritize the flows from higher priority hosts
when forwarding. It can be observed that the loss ratio is much
less in the larger network of 30 bus suggested by SDNSynth.

VI. CONCLUSION

SDNSynth provides a tool for synthesizing a resilient SDN
network topology in smart grid SCADA systems. We ad-
dress practical challenges in the deployment of SDN-enabled
switches while not exceeding available budget. Our goal is

to keep the SCADA network observable in terms of state
estimation by means of sufficient measurement delivery to the
control center. We protect smart devices such as IEDs, with
the use of SDN-enabled switches, which allow fast rerouting,
prioritization of packet flows, novel application-based routing,
etc. The availability of new SDN switches for replacement of
traditional ones is limited. The technique successfully gener-
ates a solution depicting the SDN switch and new link place-
ments, while satisfying the resiliency requirements and budget
constraints. We evaluate the tool by evaluating the scalability
and satisfactory relationship between different deployment
parameters. A simulation of SCADA networks in Mininet
depicts that SDNSynth generated topology shows faster com-
mand response time than random selection of switches for
SDN upgrade. In the future, we would like to experiment on
a real-world SDN network and demonstrate the benefits of
our framework. We plan to use the Global Environment for
Network Innovations (GENI) testbed to build a hybrid network
of SDN and lagacy routers [49]. The GENI infrastructure
allows the use of Floodlight controller in conjunction with
Open vSwitches, where we plan to compare different network
scenarios to demonstrate the effectiveness of SDNSynth.

REFERENCES

[1] V. C. Gungor, D. Sahin, T. Kocak, S. Ergut, C. Buccella, C. Cecati, and
G. P. Hancke, “Smart grid technologies: Communication technologies
and standards,” IEEE transactions on Industrial informatics, vol. 7,
no. 4, pp. 529–539, 2011.

[2] G. R. Clarke, D. Reynders, and E. Wright, Practical modern SCADA
protocols: DNP3, 60870.5 and related systems. Newnes, 2004.

[3] A. Cahn, J. Hoyos, M. Hulse, and E. Keller, “Software-defined energy
communication networks: From substation automation to future smart
grids,” in Smart Grid Communications (SmartGridComm), 2013 IEEE
International Conference on. IEEE, 2013, pp. 558–563.

[4] J. Zhang, B.-C. Seet, T.-T. Lie, and C. H. Foh, “Opportunities for
software-defined networking in smart grid,” in Information, Communica-
tions and Signal Processing (ICICS) 2013 9th International Conference
on. IEEE, 2013, pp. 1–5.

[5] L. Ren, Y. Qin, B. Wang, P. Zhang, P. B. Luh, and R. Jin, “Enabling
resilient microgrid through programmable network,” IEEE Transactions
on Smart Grid, vol. 8, no. 6, pp. 2826–2836, 2017.

[6] D. K. Hong, Y. Ma, S. Banerjee, and Z. M. Mao, “Incremental
deployment of sdn in hybrid enterprise and isp networks,” in Proceedings
of the Symposium on SDN Research. ACM, 2016, p. 1.

[7] H. Xu, X.-Y. Li, L. Huang, H. Deng, H. Huang, and H. Wang,
“Incremental deployment and throughput maximization routing for a
hybrid sdn,” IEEE/ACM Transactions on Networking, vol. 25, no. 3, pp.
1861–1875, 2017.

[8] M. A. Rahman, A. Jakaria, and E. Al-Shaer, “Formal analysis for
dependable supervisory control and data acquisition in smart grids,” in
Dependable Systems and Networks (DSN), 2016 46th Annual IEEE/IFIP
International Conference on. IEEE, 2016, pp. 263–274.

[9] A. Jakaria, M. A. Rahman, and C. J. Fungt, “Automated synthesis of
nfv topology: A security requirement-oriented design,” in 2017 13th
International Conference on Network and Service Management (CNSM).
IEEE, 2017, pp. 1–5.

[10] K. Stouffer and J. Falco, Guide to supervisory control and data acquisi-
tion (SCADA) and industrial control systems security. National institute
of standards and technology, 2006.

[11] E. Al-Shaer, M. A. Rahman et al., “Security and resiliency analytics for
smart grids,” Advances in Information Security, 2016.

[12] K. Tomsovic, D. E. Bakken, V. Venkatasubramanian, and A. Bose,
“Designing the next generation of real-time control, communication,
and computations for large power systems,” Proceedings of the IEEE,
vol. 93, no. 5, pp. 965–979, 2005.

[13] V. M. Igure, S. A. Laughter, and R. D. Williams, “Security issues in
SCADA networks,” Comp & Security, vol. 25, no. 7, pp. 498–506, 2006.

14

[14] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig, “Software-defined networking: A comprehensive
survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, 2015.

[15] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[16] N. Dorsch, F. Kurtz, H. Georg, C. Hägerling, and C. Wietfeld, “Software-
defined networking for smart grid communications: Applications, chal-
lenges and advantages,” in SmartGridComm, 2014 IEEE International
Conference on. IEEE, 2014, pp. 422–427.

[17] X. Dong, H. Lin, R. Tan, R. K. Iyer, and Z. Kalbarczyk, “Software-
defined networking for smart grid resilience: Opportunities and chal-
lenges,” in Proceedings of the 1st ACM Workshop on Cyber-Physical
System Security. ACM, 2015, pp. 61–68.

[18] K. C. Budka, J. G. Deshpande, T. L. Doumi, M. Madden, and T. Mew,
“Communication network architecture and design principles for smart
grids,” Bell Labs Tech Journal, vol. 15, no. 2, pp. 205–227, 2010.

[19] J. Kim, F. Filali, and Y.-B. Ko, “Trends and potentials of the smart
grid infrastructure: from ict sub-system to sdn-enabled smart grid
architecture,” Applied Sciences, vol. 5, no. 4, pp. 706–727, 2015.

[20] D. A. Chekired, L. Khoukhi, and H. T. Mouftah, “Decentralized cloud-
sdn architecture in smart grid: A dynamic pricing model,” IEEE Trans-
actions on Industrial Informatics, vol. 14, no. 3, pp. 1220–1231, 2018.

[21] D. Jin, Z. Li, C. Hannon, C. Chen, J. Wang, M. Shahidehpour, and C. W.
Lee, “Toward a cyber resilient and secure microgrid using software-
defined networking,” IEEE Transactions on Smart Grid, vol. 8, no. 5,
pp. 2494–2504, 2017.

[22] L. Ren, Y. Qin, Y. Li, P. Zhang, B. Wang, P. B. Luh, S. Han, T. Orekan,
and T. Gong, “Enabling resilient distributed power sharing in networked
microgrids through software defined networking,” Applied Energy, vol.
210, pp. 1251–1265, 2018.

[23] N. Feamster, J. Rexford, and E. Zegura, “The road to SDN: an intel-
lectual history of programmable networks,” ACM SIGCOMM Computer
Communication Review, vol. 44, no. 2, pp. 87–98, 2014.

[24] E. G. da Silva, L. A. D. Knob, J. A. Wickboldt, L. P. Gaspary,
L. Z. Granville, and A. Schaeffer-Filho, “Capitalizing on sdn-based
scada systems: An anti-eavesdropping case-study,” in 2015 IFIP/IEEE
International Symposium on Integrated Network Management (IM).
IEEE, 2015, pp. 165–173.

[25] E. G. da Silva, A. S. da Silva, J. A. Wickboldt, P. Smith, L. Z.
Granville, and A. Schaeffer-Filho, “A one-class nids for sdn-based scada
systems,” in 2016 IEEE 40th Annual Comp Software and Applications
Conf (COMPSAC), vol. 1. IEEE, 2016, pp. 303–312.

[26] Y. Guo, Z. Wang, X. Yin, X. Shi, J. Wu, and H. Zhang, “Incremental
deployment for traffic engineering in hybrid sdn network,” in 2015
IEEE 34th International Performance Computing and Communications
Conference (IPCCC). IEEE, 2015, pp. 1–8.

[27] D. Levin, M. Canini, S. Schmid, F. Schaffert, A. Feldmann et al.,
“Panopticon: Reaping the benefits of incremental sdn deployment in
enterprise networks.” in USENIX Annual Tech Conf, 2014, pp. 333–345.

[28] D. Levin, M. Canini, S. Schmid, and A. Feldmann, “Incremental sdn
deployment in enterprise networks,” in ACM SIGCOMM Computer
Comm Review, vol. 43, no. 4. ACM, 2013, pp. 473–474.

[29] P. Lin, J. Hart, U. Krishnaswamy, T. Murakami, M. Kobayashi, A. Al-
Shabibi, K.-C. Wang, and J. Bi, “Seamless interworking of sdn and ip,”
in ACM SIGCOMM computer communication review, vol. 43, no. 4.
ACM, 2013, pp. 475–476.

[30] S. Agarwal, M. Kodialam, and T. Lakshman, “Traffic engineering in
software defined networks,” in INFOCOM, 2013 Proceedings IEEE.
IEEE, 2013, pp. 2211–2219.

[31] S. Das, G. Parulkar, and N. McKeown, “Why openflow/sdn can succeed
where gmpls failed,” in European Conference and Exhibition on Optical
Communication. Optical Society of America, 2012, pp. Tu–1.

[32] K. Poularakis, G. Iosifidis, G. Smaragdakis, and L. Tassiulas, “One step
at a time: Optimizing sdn upgrades in isp networks,” in IEEE INFOCOM
2017-IEEE Conf on Computer Comm. IEEE, 2017, pp. 1–9.

[33] C. Chen, S. Duan, T. Cai, B. Liu, and G. Hu, “Smart energy management
system for optimal microgrid economic operation,” IET renewable power
generation, vol. 5, no. 3, pp. 258–267, 2011.

[34] A. Monticelli, “Electric power system state estimation,” Proceedings of
the IEEE, vol. 88, no. 2, pp. 262–282, 2000.

[35] M. A. Rahman, E. Al Shaer, and R. G. Kavasseri, “Security threat ana-
lytics and countermeasure synthesis for power system state estimation,”
in 2014 44th Annual IEEE/IFIP International Conf on Dependable Sys
and Networks. IEEE, 2014, pp. 156–167.

[36] A. Gomez-Exposito and A. Abur, Power system state estimation: theory
and implementation. CRC press, 2004.

[37] M. A. Rahman, E. Al-Shaer, and M. A. Rahman, “A formal model
for verifying stealthy attacks on state estimation in power grids,” in
Smart Grid Communications (SmartGridComm), 2013 IEEE Interna-
tional Conference on. IEEE, 2013, pp. 414–419.

[38] A. J. Wood and B. F. Wollenberg, Power Generation, Operation, and
Control, 2nd Edition. Wiley, 1996.

[39] A. Goodney, S. Kumar, A. Ravi, and Y. H. Cho, “Efficient pmu network-
ing with software defined networks,” in Smart Grid Communications
(SmartGridComm), 2013 IEEE International Conference on. IEEE,
2013, pp. 378–383.

[40] S. Gutz, A. Story, C. Schlesinger, and N. Foster, “Splendid isolation: A
slice abstraction for software-defined networks,” in Proceedings of the
first workshop on Hot topics in SDN. ACM, 2012, pp. 79–84.

[41] “Applying VLAN insertion in ICS/SCADA,”
https://www.paloaltonetworks.com/resources/whitepapers/applying-
vlan-insertion-in-ics-scada.

[42] L. de Moura and N. Bjørner, “Satisfiability modulo theories: An appe-
tizer,” in Brazilian Symposium on Formal Methods, 2009.

[43] L. De Moura and N. Bjørner, “Z3: An efficient SMT solver,” Tools and
Algorithms for the Construction and Analysis of Sys, pp. 337–340, 2008.

[44] “Power systems test case archive,” http://www.ee.washington.edu/
research/pstca/.

[45] “Mininet: An instant virtual network on your laptop (or other PC),”
http://mininet.org/.

[46] “Floodlight OpenFlow Controller - Project Floodligh,” http://www.
projectfloodlight.org/floodlight/.

[47] “Httping,” https://www.vanheusden.com/httping/.
[48] “fping,” http://fping.sourceforge.net/man/.
[49] “Geni,” https://groups.geni.net/geni/wiki/GENIExperimenter/Tutorials/

OpenFlowOVS-Floodlight.

A H M Jakaria obtained his PhD degree in Com-
puter Science at Tennessee Tech University, USA in
May 2020. He is currently working as an Engineer/-
Scientist III at the Electric Power Research Institute
(EPRI). He received his BS in Computer Science and
Engineering from Bangladesh University of Engi-
neering and Technology, Dhaka in 2009. He obtained
his MS in Computer Science from Tennessee Tech
in 2019. Jakaria’s primary research area includes
information and network security for smart cyber-
physical systems using NFV and SDN. He is also

interested in resiliency issues in UAV and IoT networks. He focuses on the
formal modeling of the problems and solving them efficiently for automated
synthesis of network topology and management strategies.

Mohammad Ashiqur Rahman is an Assistant Pro-
fessor in the Department of Electrical and Com-
puter Engineering at Florida International Univer-
sity, USA. He received the BS and MS degrees in
computer science and engineering from Bangladesh
University of Engineering and Technology, Dhaka,
in 2004 and 2007, respectively, and obtained the
PhD degree in computing and information systems
from the University of North Carolina at Charlotte
in 2015. Rahman’s research area covers a wide area
of computer networks that includes computer and

information security in both cyber and cyber-physical systems. His research
interest includes formal security analysis, risk assessment and security harden-
ing, secure and dependable resource management, and distributed computing.

Aniruddha Gokhale is a Professor at the Vanderbilt
University. He received his BE from University of
Pune, India, MS degree from Arizona State Univer-
sity, and PhD degree in computer science from the
Washington University, USA. His research focuses
primarily on solving systems-level challenges by
designing and implementing innovative algorithmic
solutions incorporating elegant software engineering
principles, such as design patterns, domain-specific
modeling and generative programming. Specifically,
he is interested in solving systems problems involv-

ing a variety of quality of service and data consistency issues through effective
resource management, particularly in Cloud computing, Cyber Physical Sys-
tems, and Internet of Things.

http://www.ee.washington.edu/research/pstca/
http://www.ee.washington.edu/research/pstca/
http://mininet.org/
http://www.projectfloodlight.org/floodlight/
http://www.projectfloodlight.org/floodlight/
https://www.vanheusden.com/httping/
http://fping.sourceforge.net/man/
https://groups.geni.net/geni/wiki/GENIExperimenter/Tutorials/OpenFlowOVS-Floodlight
https://groups.geni.net/geni/wiki/GENIExperimenter/Tutorials/OpenFlowOVS-Floodlight

	Introduction
	Background and Research Objective
	SCADA Security Issues
	Software-Defined Networking
	SDN and SCADA Resiliency
	Research Objectives
	Related Works

	Synthesis of SDN Deployment Network
	SDNSynth Framework
	Preliminary of Formal Model
	Observability
	Priority Management
	Resiliency Management
	Virtualization and Isolation
	Resources and Budget Constraints

	Prototype Implementation of SDNSynth and An Example Case Study
	Target Variables in the Model
	A Synthetic Pedagogical Case Study

	Evaluation
	Methodology
	Relationships of Deployment Parameters
	Scalability
	Experiments on Mininet-based Virtual SCADA Testbeds
	Switch Forwarding Speed
	Communication Time While Routing Recovery for Resilient Networks
	Packet Loss Ratio For Resilient Networks

	Conclusion
	References
	Biographies
	A H M Jakaria
	Mohammad Ashiqur Rahman
	Aniruddha Gokhale

