PennState

=

Rethinking Toolchain Design for Rust
Linhai Song! and Hao Chen?

Isonglh@jist.psu.edu; 2chen@ucdavis.edu

H "'l Y \VYIT o
[ & I BARYY B

| A LA 800 odty o
. N / T B W LI

UNIVERSITY OF CALIFORNIA

- What is Rust?

* A young lang. providing both efficiency and safety
* Key mnovation i1s its safety mechanism and rules

— Centering around ownership and lifetime

— Checked against during compilation

* Rust’s popularity 1s increasing dramatically

— The most loved language since 2016

— Widely adopted to build safety critical software

: : )
Rust’s Learning and Bug Detection

* Rust has a steep learning curve
— Safety mechanism 1s too unique
— Rust’s design philosophy is to reject all suspicious code

* Safety checks cannot capture all memory bugs
— Because of the usage of unsafe code
— How to build novel detection techniques for Rust?

— How to reuse existing techniques (e.g., fuzzing) for Rust?

)

4 Rust’s Toolchain and Proposed Tasks O

RQ-2: How well does
Rust work to prevent

RQ-1: How to improve
Rust’s programmability ?

RQ-3: How to optimize
exiting tools and design

memory bugs? new tools?
. ﬁ' hrust 1: Challenges\ __________ X [ Thrust 2: Memory ] Ghrust“ll: In;?ut Generatlon\
: Empirical i : Bug Study program £
: Study Study : ? lib o —2
IDE : fuzzing SYmbolic
k -t J prosesees Compi[er Checks k‘ 8 execution )
__af Sgudrce _» MIR LLVM _'_> Binary
(IR e
I T : E ; llllllllllll : :
s : : Thrust 3: Static Tech. ] v ¥
‘ I : : (Thrust 5: Dynamic Tech.
: IIII; IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII ﬁ Memoryﬁhread
*«s| Stack Overflow s Safe Objects
*=4 Thrust 6: Error Fixing ] I
v vy
Testing I I Diagnosis

\
N /
/ Rust’s Programming Challenges .. \

e Study 118 safety-rule violations from Stack Overflow
— RQ-1: Which Rust safety rules are difficult?
— RQ-2: When 1s a safety rule more challenging?
— RQ-3: How helpful 1s the Rust compiler?

Safety-rule
ki 118
Violations

Lifetime

Ownership

Rules

Computation

a4 30 3 18
Inter- Intra- Struct
Procedural Procedural Declaration

23
Borrow

[ = = = = e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e =

' Finding 2: Rust’s safety mechanism may be difficult to apply in concrete i
| usage scenarios. |
' Finding 3: More lifetime-related questions are asked on Stack Overflow !
|
|
|

: than ownership-related questions, indicating lifetime computation is more
 challenging in Rust programming.

e Survey 101 real-world Rust programmers
— To validate the empirical study on Stack Overflow
— Asking for their previous experience in coding Rust

— Inspecting how they comprehend safety-rule violations

1 #![allow(unused_variables)] rror[E@582]: cannot bo
19 le mut outl.a[0];

3 struct Inner { inner: u8 }
4 struct Outerl { a: [Inner; 2] }
5 struct Outer2 { a: (Inner, Inner) }

7 fn test(inl: &mut Inner, in2: &Inner)<{}

9 fn main() {
0 let mut outl = QOuterl { a:

[Inner {inner: 1}, Inner {inner: 3}]};
2 let mut out2 = Quter2 { a:

(Inner {inner: 1}, Inner {inner: 3})};
14 - test(Zmut outi.a[0], Zoutl.a[1]);@
5 + let (first, rest) = outl.a.split_first_mut().unwrap();
6 + test(first, &rest[0]);
7 test (Zmut out2.a.0, &out2.a.1); @
18 } PC-1 changes to PC-3

» o
3 -
o ——— ) |—— — —
3 e

w

more information about this error, try “rustc --explain E@502

(a) Rust program (b) Compiler error messages

Figure 1: A Rust program and its compiler error. we replace lines 14 and 18
wreate a program variant and add the green-colored rectangle to enhance the error messages/

] Empirical Study on Rust Memory Bugs[D

e 70 memory bugs from 10 representative apps

Buffer | Null | Uninitialized | IF | UAF |Double Free
safe 0 0 0 0 1 0 1
unsafe * 4(1) |12 4) 0 53) |2(Q) 0 23 (10)
safe -> unsafe * |17(10) | 0 0 1 |11 4) 2(2) |31(16)
unsafe -> safe 0 0 7 4 0 4 15

Table 1: Memory BllgS Category. Buffer: buffer overflow, Null: Null pointer
dereferencing,; Uninitialized: read uninitialized memory; IF: invalid free; UAF: use after free.
*: numbers in () are for bugs whose effects are in interior-unsafe functions.

' Finding 1: Rust’s safety mechanisms (in Rust’s stable versions) are
' very effective 1n preventing memory bugs. All Rust memory bugs
' involve unsafe code (although many of them also involve safe code).

\
-

Static Bug Detection

_ Apps | Stars [KLOC| UAF | IF | DL | CL | AV |
Servo 19199 | 320 0 0 0 0 1
Tock 2695 117 0 0 0 0 0
Ethereum | 6310 128 0 0 13 14 3
TiKV 8903 237 0 0 0 0 0
Redox 12966 59 5 0 0 0 0
wasmer 8943 75 1 0 12 0 0
substrate 3969 247 0 0 2 0 0
solana 1313 214 0 0 9 8 1
lighthouse 955 102 0 0 9 0 0
rCore 1559 22 0 0 5 3 0
Total - - 6 0 50 25 5

Table 2: Detected Bugs. UAF: use after fiee; IF: invalid free; DL: double locks; CL:

\conﬂicting lock,; and AV: atomicity violation.

 CNS-1955965: SaTC: CORE: Small: Collaborative: Understanding and
Detecting Memory Bugs in Rust

AN

SF Support

* CNS-2145394: CAREER: Rethinking Toolchain Design for Rust

References

* [1] “Understanding Memory and Thread Safety Practices and Issues in
Real-World Rust Programs”. Boqin Qin, Yilun Chen, Zeming Yu, Linhai
Song, Yiying Zhang. PLDI’2020

* [2] “Learning and Programming Challenges of Rust: A Mixed-Methods
Study”. Shuofei Zhu, Ziyi Zhang, Bogin Qin, Aiping Xiong, Linhai Song.
ICSE’2022.

* [3] “Beyond Bot Detection: Combating Fraudulent Online Survey
Taker”. Ziyi Zhang, Shuofei Zhu, Jaron Mink, Aiping Xiong, Linhai Song,
\_ Gang Wang. WWW'2022.



mailto:songlh@ist.psu.edu
mailto:chen@ucdavis.edu

