
Empirical Study on Rust Memory Bugs[1]

• A young lang. providing both efficiency and safety 
• Key innovation is its safety mechanism and rules
– Centering around ownership and lifetime
– Checked against during compilation

• Rust’s popularity is increasing dramatically
– The most loved language since 2016
–Widely adopted to build safety critical software

• Rust has a steep learning curve
– Safety mechanism is too unique 
– Rust’s design philosophy is to reject all suspicious code

• Safety checks cannot capture all memory bugs
– Because of the usage of unsafe code 
– How to build novel detection techniques for Rust?
– How to reuse existing techniques (e.g., fuzzing) for Rust?
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Rust’s Toolchain and Proposed Tasks 

• 70 memory bugs from 10 representative apps

Rust’s Programming Challenges[2,3] Static Bug Detection

Category
Wrong Access Lifetime Violation Total

Buffer Null Uninitialized IF UAF Double Free

safe 0 0 0 0 1 0 1

unsafe * 4 (1) 12 (4) 0 5 (3) 2 (2) 0 23 (10)

safe -> unsafe * 17 (10) 0 0 1 11 (4) 2 (2) 31 (16)

unsafe -> safe 0 0 7 4 0 4 15

Table 1: Memory Bugs Category. Buffer: buffer overflow; Null: Null pointer 
dereferencing; Uninitialized: read uninitialized memory; IF: invalid free; UAF: use after free. 
*: numbers in () are for bugs whose effects are in interior-unsafe functions.

Finding 1: Rust’s safety mechanisms (in Rust’s stable versions) are 
very effective in preventing memory bugs. All Rust memory bugs 
involve unsafe code (although many of them also involve safe code).
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• Study 118 safety-rule violations from Stack Overflow
– RQ-1: Which Rust safety rules are difficult?
– RQ-2: When is a safety rule more challenging? 
– RQ-3: How helpful is the Rust compiler?

Finding 2: Rust’s safety mechanism may be difficult to apply in concrete 
usage scenarios. 
Finding 3: More lifetime-related questions are asked on Stack Overflow 
than ownership-related questions, indicating lifetime computation is more 
challenging in Rust programming.  

• Survey 101 real-world Rust programmers
– To validate the empirical study on Stack Overflow
– Asking for their previous experience in coding Rust
– Inspecting how they comprehend safety-rule violations

Figure 1: A Rust program and its compiler error. We replace lines 14 and 18 
to create a program variant and add the green-colored rectangle to enhance the error messages.

Apps Stars KLOC UAF IF DL CL AV
Servo 19199 320 0 0 0 0 1

Tock 2695 117 0 0 0 0 0

Ethereum 6310 128 0 0 13 14 3

TiKV 8903 237 0 0 0 0 0

Redox 12966 59 5 0 0 0 0

wasmer 8943 75 1 0 12 0 0

substrate 3969 247 0 0 2 0 0

solana 1313 214 0 0 9 8 1

lighthouse 955 102 0 0 9 0 0

rCore 1559 22 0 0 5 3 0

Total - - 6 0 50 25 5

Table 2: Detected Bugs. UAF: use after free; IF: invalid free; DL: double locks; CL: 
conflicting lock; and AV: atomicity violation.
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