
Empirical Study on Rust Memory Bugs[1]

• A young lang. providing both efficiency and safety
• Key innovation is its safety mechanism and rules
– Centering around ownership and lifetime
– Checked against during compilation

• Rust’s popularity is increasing dramatically
– The most loved language since 2016
–Widely adopted to build safety critical software

• Rust has a steep learning curve
– Safety mechanism is too unique
– Rust’s design philosophy is to reject all suspicious code

• Safety checks cannot capture all memory bugs
– Because of the usage of unsafe code
– How to build novel detection techniques for Rust?
– How to reuse existing techniques (e.g., fuzzing) for Rust?

Rethinking Toolchain Design for Rust
Linhai Song1 and Hao Chen2

What is Rust? Rust’s Learning and Bug Detection

Rust’s Toolchain and Proposed Tasks

• 70 memory bugs from 10 representative apps

Rust’s Programming Challenges[2,3] Static Bug Detection

Category
Wrong Access Lifetime Violation Total

Buffer Null Uninitialized IF UAF Double Free

safe 0 0 0 0 1 0 1

unsafe * 4 (1) 12 (4) 0 5 (3) 2 (2) 0 23 (10)

safe -> unsafe * 17 (10) 0 0 1 11 (4) 2 (2) 31 (16)

unsafe -> safe 0 0 7 4 0 4 15

Table 1: Memory Bugs Category. Buffer: buffer overflow; Null: Null pointer
dereferencing; Uninitialized: read uninitialized memory; IF: invalid free; UAF: use after free.
*: numbers in () are for bugs whose effects are in interior-unsafe functions.

Finding 1: Rust’s safety mechanisms (in Rust’s stable versions) are
very effective in preventing memory bugs. All Rust memory bugs
involve unsafe code (although many of them also involve safe code).

NSF Support
• CNS-1955965: SaTC: CORE: Small: Collaborative: Understanding and

Detecting Memory Bugs in Rust

• CNS-2145394: CAREER: Rethinking Toolchain Design for Rust

References
• [1] “Understanding Memory and Thread Safety Practices and Issues in

Real-World Rust Programs”. Boqin Qin, Yilun Chen, Zeming Yu, Linhai
Song, Yiying Zhang. PLDI’2020

• [2] “Learning and Programming Challenges of Rust: A Mixed-Methods
Study”. Shuofei Zhu, Ziyi Zhang, Boqin Qin, Aiping Xiong, Linhai Song.
ICSE’2022.

• [3] “Beyond Bot Detection: Combating Fraudulent Online Survey
Taker”. Ziyi Zhang, Shuofei Zhu, Jaron Mink, Aiping Xiong, Linhai Song,
Gang Wang. WWW’2022.

1songlh@ist.psu.edu; 2chen@ucdavis.edu

• Study 118 safety-rule violations from Stack Overflow
– RQ-1: Which Rust safety rules are difficult?
– RQ-2: When is a safety rule more challenging?
– RQ-3: How helpful is the Rust compiler?

Finding 2: Rust’s safety mechanism may be difficult to apply in concrete
usage scenarios.
Finding 3: More lifetime-related questions are asked on Stack Overflow
than ownership-related questions, indicating lifetime computation is more
challenging in Rust programming.

• Survey 101 real-world Rust programmers
– To validate the empirical study on Stack Overflow
– Asking for their previous experience in coding Rust
– Inspecting how they comprehend safety-rule violations

Figure 1: A Rust program and its compiler error. We replace lines 14 and 18
to create a program variant and add the green-colored rectangle to enhance the error messages.

Apps Stars KLOC UAF IF DL CL AV
Servo 19199 320 0 0 0 0 1

Tock 2695 117 0 0 0 0 0

Ethereum 6310 128 0 0 13 14 3

TiKV 8903 237 0 0 0 0 0

Redox 12966 59 5 0 0 0 0

wasmer 8943 75 1 0 12 0 0

substrate 3969 247 0 0 2 0 0

solana 1313 214 0 0 9 8 1

lighthouse 955 102 0 0 9 0 0

rCore 1559 22 0 0 5 3 0

Total - - 6 0 50 25 5

Table 2: Detected Bugs. UAF: use after free; IF: invalid free; DL: double locks; CL:
conflicting lock; and AV: atomicity violation.

mailto:songlh@ist.psu.edu
mailto:chen@ucdavis.edu

