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Hip Moment Estimation for Exoskeleton Control

• Human hip augmentation has been shown to have high 
impacts in improving gait [6].

• Exoskeleton technology can be optimized to maximize 
performance from both a hardware [4, 23] and 
controller perspective [1, 13, 16].

• Incorporating myoelectric sensing into the exoskeleton 
controller also provides the opportunity to predict the 
wearer’s future intent [3, 17].

• Estimation of the user and environmental state can be 
used to provide seamless assistance across 
ambulation modes [5, 11, 12].

Electromyography for Enhanced Exoskeleton Studies

Exoskeleton studies vs. metabolic cost 
benefit [6]

User-Independent & Adaptive State Estimation

Advanced Hip Exoskeleton Designs for Specialized Use Cases

Specifications

Peak Torque: ~ 120 Nm

Max Continuous Torque: ~ 50 Nm

Max Speed: ~ 8 rad/sec

Transmission:  50:1

Total Mass: 6 kg

• Hybrid neuromuscular models use measured muscle activity and kinematics to 
emulate the underlying human joints [10].

• Measured muscle activity using electromyography (EMG) can be used as a 
proxy for rapidly estimating the user’s metabolic cost.

• Estimation of the user and environmental states enable exoskeleton control 
strategies to change with changes in the user’s needs [5, 11, 12].

• Autonomously updating the state estimators online, exoskeleton controllers can 
adapt with changes in environment and user.

SEA-driven Bilateral Robotic Hip Exoskeleton [23]

Ambulation Mode Independent Gait Phase Estimation Strategy using CNN

Neural Network-based Ground Slope Predictor for Modulating Knee Exoskeleton Assistance Magnitude

EMG for Control Optimization

Self-Adaptive Gait Phase Estimation

Predicting Changes in the Environment

Robotic Knee Exoskeleton Running 
Real-Time Slope Predictor

Offline Hip Moment Estimation and Prediction

Online RMSE of the Static Gait Phase 
Model During Multimodal Ambulation

Sensor Type Selection
based on Ambulation Mode and Anticipation Time

Model Prediction Performance
based on Ambulation Mode and Anticipation Time

Experimental Setup for Collecting Wearable Sensor Data 
during Overground Ambulation

Model Generalization to Hold-Out Ambulation Conditions 
(i.e., ground slopes and stair heights)

• Estimating the user’s biological joint moment using wearable sensors could provide a single, 
continuous gait variable to dynamically modulate assistance [9].

• Neural networks can predict biological joint moments using wearable sensor data [17] and 
can generalize to unseen environments [19].

• Implementing the neural network in the exoskeleton control loop reduces the user’s metabolic 
cost of walking with the potential of task-invariant control.

• Using a convolutional neural network, exoskeleton sensor data can be used to 
estimate gait phase independent of user and ambulation mode [12].

• By autonomously labeling the incoming exoskeleton sensor data and updating the 
neural network, the gait phase estimator can increase in accuracy by 67%.

• A deep learning framework enabled accurate predictions of the ground slope (RMSE of 
1.5°), providing a reference signal used to update exoskeleton assistance magnitude with 
changes in the user’s biological joint demand [11].

• Hip goniometer and IMU data from our opensource dataset enabled a temporal convolutional 
network to estimate hip torques with an R2 of 0.88 [19].

• Adding EMG data as a model input improves joint moment prediction when anticipating up to 150 
ms into the future, consistent with muscle electromechanical delay [17].

High Torque, Robust Interface

Specifications

Peak Torque: ~ 15 Nm

Max Continuous Torque: ~ 9 Nm

Max Speed: ~ 33.3 rad/sec

Transmission:  9:1

Total Mass: 4.5 kg

Lightweight, Highly Transparent

Hip Exoskeleton Control Using Neural Network-Based Hip Moment Estimates

• Using hip exoskeleton encoder and IMU data as input, we implemented a user-independent 
temporal convolutional network for estimating the user’s sagittal hip moments in real-time.

• The resulting system reduced the metabolic cost of walking by an average of 10.8% compared to 
not wearing the exoskeleton and by 19.6% compared to wearing the unpowered exoskeleton.

Exoskeleton Control Using Hip Moment Estimates from a Temporal 
Convolutional Network

User Metabolic Cost With and Without Using 
the Novel Controller

Online Adaptation Framework for Autonomously 
Adapting the Gait Phase Estimator Online

Online RMSE of the Static and Adaptive 
Gait Phase Model During Level Walking

Real-Time Slope Prediction and the Resulting Changes in Exoskeleton Assistance

Hybrid Neuromuscular Model (NMM) Based Controller

• Using EMG and hip joint angle as inputs, a NMM model can 
mimic the hip joint, producing adaptive exoskeleton torques 
across locomotion modes [10].

• Multi-channel EMG can be 
used to rapidly and non-
invasively estimate the 
human’s metabolic cost.

• Multivariable linear 
regression analysis was used 
to identify key lower-limb 
muscles to produce the best 
fit.

Framework and Results for Hybrid Neuromuscular Model-Based Exoskeleton Control

Example Metabolic Cost & 
Corresponding EMG Landscapes

Resulting 
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Model

Direct-driven Bilateral Robotic Hip Exoskeleton

Resulting Publications

• Based on offline analyses, deep learning methods can be extended to estimate and predict 
many user and environmental states, including ambulation mode [8, 21], step length [15], 
walking speed [3], and stop/start transitions [14].

Offline Analysis of Continuous, User-Independent Ambulation Mode Classification

• Optimizing the model for level 
walking generalized well to walking 
on inclines and declines [22].


