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Advanced Hip Exoskeleton Designs for Specialized Use Cases

High Torque, Robust Interface Lightweight, Highly Transparent
Specifications f

Peak Torque: ~ 120 Nm

Introduction

Human hip augmentation has been shown to have high
impacts in improving gait [6].

Exoskeleton technology can be optimized to maximize
performance from both a hardware [4, 23] and
controller perspective [1, 13, 16].

Incorporating myoelectric sensing into the exoskeleton
controller also provides the opportunity to predict the
wearer's future intent [3, 17].

Estimation of the user and environmental state can be

used to provide seamless assistance across

ambulation modes [5, 11, 12]. Exoskeleton “Qﬁ:i?ﬁ' ?6;" etabolic cost SEA-driven Bilateral Robotic Hip Exoskeleton [23] Direct-driven Bilateral Robotic Hip Exoskeleton

Specifications

Peak Torque: ~ 15 Nm

Hip & Ankle
Special
Passive

Max Continuous Torque: ~ 50 Nm Max Continuous Torque: ~ 9 Nm

Max Speed: ~ 8 rad/sec Max Speed: ~ 33.3 rad/sec

Net Metabolic Change (%)

Transmission: 50:1
Total Mass: 6 kg

Transmission: 9:1
Total Mass: 4.5 kg

Hip Moment Estimation for Exoskeleton Control User-Independent & Adaptive State Estimation Predicting Changes in the Environment

« A deep learning framework enabled accurate predictions of the ground slope (RMSE of

. Estimating the user’s biological joint moment using wearable sensors could provide a single, . Estimation of the user and environmental states enable exoskeleton control 1.5°), providing a reference signal used to update exoskeleton assistance magnitude with
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