Robots that Learn to Communicate through Natural Human Dialog

HAREL YEDIDSION, JESSE THOMASON, AISHWARYA PADMAKUMAR, JIVKO SINAPOV, JUSTIN HART, PETER STONE, AND RAYMOND MOONEY

Our Goal

Develop a human-robot dialog system that communicates through natural language, and learns to become more capable from repeated user interactions

Method and Novelty

We integrate and adapt learning techniques from:

And implement them on a mobile robot

Perceptual language grounding

Associating words and phrases in language to objects, properties and relations in the world as perceived by the robot's sensors

Exploring objects for all possible sensorimotor contexts takes time

Multi-modal Predicate Identification using Dynamically Learned Robot Controllers , Amiri et al. (IJCAI 2018)

Efficient exploratory behavior using MOMDP

Guiding exploratory behaviors for multi-modal grounding of linguistic descriptions. Thomason et al. (AAAI 2018)

Efficient exploratory behavior using linguistic closeness

Opportunistic active learning for grounding natural language descriptions. Thomason et al. **(CoRL 2017)**

Asking off topic questions to improve **future** interactions in object retrieval tasks

The inquisitive agent achieved better accuracy and was rated as more fun to interact with

Learning a Policy for Opportunistic Active Learning Padmakumar et al. **(EMNLP 2018)**

Using **reinforcement learning** to learn a policy for opportunistic active learning using the Visual Genome dataset

	Active Training Set		Dialog		Active Test Set	
	Train_1	Train_4	Robot Human	Describe the object I should find. A white umbrella	Test_1	Test_2
	Train_2		Robot	Is there something in Train_6 that can be described as yellow?		
ļ	Train_5		Human	No	Test_3	
	Train_3		Robot	Can you show me an image with something that can be described as white?		
	Train_6 Train_7	Train_8	Human	Train_1	Test_4	
			Robot Human	My guess is Test_4 Correct		

The agent needs to identify which object is best described by a given phrase

Policy	Success rate	Average Dialog Length		
Learned	0.44	12.95		
Static	0.29	16		

The learned policy proved **more accurate** than the static policy with a **shorter dialog** length

Jointly improving parsing and perception for natural language commands through human-robot dialog. **(RSS 2018)**

Integration on a mobile robot + Demo

Contributions

- A human robot dialog system that learns to ground new predicates
- •Object exploration as an MDP and by modeling linguistic closeness
- RL-based opportunistic active learning to improve parsing and perception

Fully integrated on a mobile robot

Acknowledgements

Ray Mooney

Peter Stone

Jesse Thomason

Aishwarya Padmakumar

Shiqi Zhang

Justin

Hart

Jivko Sinapov

Nick Walker

Yuqian Jiang

Saeid Amiri

Suhua Wei

Harel Yedidsion

