

### Overview

We introduce input/output chemical reaction networks (I/O CRNs) which generalize the behavior of CRNs under deterministic mass-action semantics to allow input to be provided over time via a chemical signal.

We present a uniform **compiler** for translating an arbitrary nondeterministic finite automaton (NFA) into an I/O CRN that simulates it.

The I/O CRN exploits the inherent parallelism of chemical kinetics to simulate the NFA in **real time** with a number of chemical species that is **linear** in the number of states of the NFA.

We show this translation is **robust** with respect to perturbations of the (i) initial state; (ii) input signal; (iii) output signal; and (iv) rate constants.

Robustness is a **necessary** condition for safety.

#### **Output Chemical Reaction Networks** Input /



N = (S, R, U, V) is an I/O CRN where

- S is a set of **state species**;
- U is a set of **input species**;
- $V \subseteq S$  is a set of **output species**;

Species in U are only used as catalysts in N.

• R is a set of **reactions** over  $S \cup U$ ;

Starting from an initial state,  $\mathbf{x}_0$ , the I/O CRN N continuously reads the input signal  $\mathbf{u}(t)$  and produces an output signal  $\mathbf{v}(t)$ .

The concentration signals  $\mathbf{u}(t)$  and  $\mathbf{v}(t)$  are simply vectors of concentrations of the species in U and V, respectively.

# Safety-Aware Cyber-Molecular Systems Robyn R. Lutz (PI), Eric R. Henderson, James I. Lathrop, Jack H. Lutz Iowa State University Robust Biomolecular Finite Automata\*

#### Robustness in I/O CRNs

We define four ways an I/O CRN N = (S, R, U, V) can be robust.

| Inital state:   | works for all $\mathbf{x}_0^*$ near |
|-----------------|-------------------------------------|
| Input signal:   | works for all $\mathbf{u}^*(t)$     |
| Output signal:  | works for all $\mathbf{v}^*(t)$     |
| Rate constants: | works for all $k^*(t)$              |

Note that  $k^*(t)$  is a function of time! Our notion of robustness with respect to rate constants must account for **adversaries** capable of changing the rate constants over time.

Howver, we still use the intuitive notation

 $X + Z \xrightarrow{k^*} 2Y + Z.$ 

### **Encoding Strings into Signals**

I/O CRNs are a generalization of CRNs that receive input via **signals** over time.

Suppose we wish to encode the string  $w = a_0 a_1 a_2 \cdots a_{n-1}$  over an alphabet  $\Sigma$  as a concentration signal.

It is useful to introduce two new symbols, r and c, and replace each  $a_i$  with the padded  $ra_i c$  string yielding

 $\hat{w} = ra_0 cra_1 cra_2 c \cdots ra_{n-1} c.$ 

Ideally we would like to encode the modified string  $\hat{w}$  as a square wave.



Robustness with respect to the input signal must allow for approximations to the ideal input.



 $\mathbf{v}(t)$ 

#### Nondeterministic Finite Automata

ear  $\mathbf{x}_0$ 

near  $\mathbf{u}(t)$ 

near  $\mathbf{v}(t)$ 

near k



Any signal x(t) that stays within the bounds is close

An NFA is a state transition system that reads an input string and outputs "accept" or "reject."

 $M = (Q, \Sigma, \Delta, I, F)$  is an NFA where

- Q is a set of **states**
- $\Sigma$  is an **input alphabet**
- $\Delta$  is a **transition function**
- $I \subseteq Q$  is a set of **initial states**
- $F \subseteq Q$  is a set of **final states**

## Compiling NFAs into I/O CRNs

We construct an I/O CRN (N = (S, R, U, V) from an NFA  $M = (Q, \Sigma, \Delta, I, F)$ . The input string is provided to N as a signal, and N outputs its decision via the concentration of its output species after reading the input.

We show that N is robust with respect to all four types of robustness described.

We use  $|\Sigma| + 2$  input species.

- $X_a$  for each  $a \in \Sigma$ ;
- $X_r$  for **setup**;
- $X_c$  for **teardown**.

#### State / Output Species (S, V)

We use 4|Q| state species. For  $q \in Q$ 

- $Y_q, Y_q$  to **store** the current state;
- $Z_q, Z_q$  to **compute** next states.

Output species: each  $Y_q$  for  $q \in F$ .

We use  $5|Q| + |\Delta|$  reactions

- 2|Q| reactions use  $X_c$  to **store** the next states.

This NFA "accepts" bit strings with a "1" as the second-to-last bit.

Input Species (U)

The input signal always comes in triples:  $X_r \to X_a \to X_c$ .

 $Y_q$  and  $Z_q$  are dual railed

with  $\bar{Y}_q$  and  $\bar{Z}_q$ .

#### Reactions (R)

• |Q| reactions use  $X_r$  to **setup** to receive the next symbol. •  $|\Delta|$  reactions use  $X_a$  to **compute** the transition function.

• 2|Q| reactions use approximate majority to **maintain** values.

```
Example: for each transition (s, a, q) \in \Delta, we have
  X_a + Y_s + \bar{Z}_q \xrightarrow{k} X_a + Y_s + Z_q
```