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Motivation

Reactive systems working in uncertain environ-
ments should possess a robustness property with
respect to errors and disturbances resulting from

• A mismatch between physical system and
computational model

• Sensor errors

• Changing requirements

We want to be able to build systems in which
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APPLICATIONS
TRANSIENT ERRORS: For example in electronic
circuits such as FPGAs.
AUTOMOTIVE:
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Consider the nominal reachability automaton shown to the left. The disturbance
is bounded by � = 1. The relative distances of the states in Q are approximated
by their layout in the graph. For example, choosing b at state q0 could result in
reaching any one of the states in the cream ellipse under the effects of a distur-
bance.

SHORTEST PATH STRATEGY Define S1 : Q ! ⌃, q 7! b for all q 2 Q. This
strategy chooses the shortest path to q6 from every state. Under a disturbance
bounded by �, the strategy S1 can guarantee that a state in the green ellipse will
be reached in finite time.

OUR STRATEGY Define S2 : Q ! ⌃, q 7! a for all q 2 Q. A control Lyapunov function was synthesized for the automaton using our polynomial time algorithm.
This is achieved by solving an optimal reachability problem with a suitably defined cost function. The strategy S2 is then induced from the resulting control
Lyapunov function. Under a disturbance bounded by �, the strategy S2 can guarantee that a state in the blue ellipse will be reached in finite time.

Existing theory

Continuous Discrete
systems systems (software)
Controller Supervisory controller
synthesis synthesis using games on graphs

There exists a What is the
theory of corresponding theory
robust control here?

The existing boolean approach is too coarse to dis-
tinguish “small” errors.

WANT: To develop a theory of robustness for dis-
crete systems.

PROBLEM: No notion of topology or metric - how
do we quantify the effect of an error?

OUR SOLUTION: Metric automata.

Key idea: control Lyapunov functions

Our approach to strategy synthesis relies on the construction of a special type
of rank function. The following definition is inspired by methods in continuous
control.
A function V : Q ! R+

0 satisfying suitable conditions is a control Lyapunov
function if for all q 2 Q there exists a 2 ⌃ such that

V(qa✏)�V(q)  �f(d(q,Acc))

where d(q, Acc) is the distance between q and Acc and f is a non-linear gain.

Metric Automata

A metric automaton is an automaton augmented with a distance function on Q. Both the system and the
environment control the actions of the automaton; the effect of the environment’s input is bounded by �
as shown in the right hand picture. The environment input ✏ 2 X denotes the nominal outcome - the
outcome which would result if no disturbances were present.

A = ((Q,d),⌃⇥X| {z },q0
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A (memoryless) strategy is a function S : Q ! ⌃ which specifies an input choice at each state in Q. A
strategy is winning if, regardless of which inputs the environment chooses, the acceptance condition of A
is still satisfied.

Main Result

Let A be a metric automaton with either:

a (finite) reachability acceptance condition OR
an (infinite) !-regular acceptance condition.

There exists an algorithm to construct a winning strategy for
an inflated acceptance condition in polynomial time, where the
size of the inflation depends linearly on �.

Extensions

• Take into account modeled adversarial be-
havior of the environment in addition to un-
modeled disturbances

• Combine with discrete abstractions of contin-
uous systems


