Henry Samueli School of Engineering and Applied Science

Electrical Engineering Department

Motivation

Reactive systems working in uncertain environments should possess a **robustness** property with respect to errors and disturbances resulting from

- A mismatch between physical system and computational model
- Sensor errors
- Changing requirements

We want to be able to build systems in which

small (unmodeled) disturbances in system

small difference in outcome

APPLICATIONS TRANSIENT ERRORS: For example in electronic circuits such as FPGAs. **AUTOMOTIVE:**

Extensions

- Take into account modeled adversarial behavior of the environment in addition to unmodeled disturbances
- Combine with discrete abstractions of continuous systems

Rupak Majumdar, Elaine Render, Paulo Tabuada

Continuous	Discrete
systems	systems (software)
Controller	Supervisory controller
synthesis	synthesis using games on graphs
There exists a	What is the
theory of	corresponding theory
robust control	here?

tinguish "small" errors.

WANT: To develop a theory of robustness for discrete systems.

PROBLEM: No notion of topology or metric - how do we quantify the effect of an error?

OUR SOLUTION: Metric automata.

Main Result

Let *A* be a metric automaton with either:

a (finite) reachability acceptance condition OR

size of the inflation depends linearly on γ .

Example

OUR STRATEGY Define $S_2: Q \to \Sigma, q \mapsto a$ for all $q \in Q$. A control Lyapunov function was synthesized for the automaton using our polynomial time algorithm. This is achieved by solving an optimal reachability problem with a suitably defined cost function. The strategy S_2 is then induced from the resulting control Lyapunov function. Under a disturbance bounded by γ , the strategy S_2 can guarantee that a state in the blue ellipse will be reached in finite time.

Metric Automata

A metric automaton is an automaton augmented with a distance function on Q. Both the system and the environment control the actions of the automaton; the effect of the environment's input is bounded by γ as shown in the right hand picture. The environment input $\epsilon \in X$ denotes the nominal outcome - the outcome which would result if no disturbances were present.

A (memoryless) strategy is a function $S : Q \to \Sigma$ which specifies an input choice at each state in Q. A strategy is *winning* if, regardless of which inputs the environment chooses, the acceptance condition of A is still satisfied.

> **SHORTEST PATH STRATEGY** Define $S_1 : Q \to \Sigma, q \mapsto b$ for all $q \in Q$. This strategy chooses the shortest path to q_6 from every state. Under a disturbance bounded by γ , the strategy S_1 can guarantee that a state in the green ellipse will be reached in finite time.

Our approach to strategy synthesis relies on the construction of a special type of *rank function*. The following definition is inspired by methods in continuous

A function $V : Q \to \mathbb{R}_0^+$ satisfying suitable conditions is a **control Lyapunov**

 $\mathbf{V}(\mathbf{q}^{\mathbf{a}\epsilon}) - \mathbf{V}(\mathbf{q}) \leq -\mathbf{f}(\mathbf{d}(\mathbf{q}, \mathbf{Acc}))$

where d(q, Acc) is the distance between q and Acc and f is a non-linear gain.

Consider the nominal reachability automaton shown to the left. The disturbance is bounded by $\gamma = 1$. The relative distances of the states in Q are approximated by their layout in the graph. For example, choosing b at state q_0 could result in reaching any one of the states in the cream ellipse under the effects of a distur-