Robust Grasping by Integrating Machine Learning with Physical Models

Zixi Liu¹, Robert Howe^{1,2}, Lucas Janson¹ ¹ Harvard University^{, 2} RightHand Robotics, Inc. http://biorobotics.harvard.edu/research.html

Abstract

- Contact sensing is essential for reliable robotic grasping in unstructured environments, but existing methods have not been effective, and **requirements** for effective sensors are unknown.
- This project aims to establish the foundation for effective grasp stability prediction and control by developing new ways to integrate **machine learning** with **physical** sensor models.
- Physical sensor models will be characterized in grasping experiments and validated against independent ground truth measurements.
- Physical models based on mechanical principles (grasp analysis) will be augmented using parametric and nonparametric machine learning methods, allowing interpretability and generalizability.

• Analysis of these models will guide the **creation of a new sensor suite** that, together with the carefully-crafted models, will form the basis for reliable robotic grasping systems.

 Tactile Array 	
 Force-Torque 	
 Joint Angles 	

Learning N	/ odels
------------	----------------

 Contact Locations • Surface Normals • Contact forces

Learning Models

• Epsilon • Max. task wrench

Intellectual Merit

Preliminary Results

cone. Object acceleration is an indicator of when slip occurs.

2020 National Robotics Initiative (NRI) Principal Investigators' Meeting

FEBRUARY 27 - 28, 2020 | ARLINGTON, VIRGINIA

Award ID#: 1924984