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Abstract
Contact sensing is essential for reliable robotic grasping in unstructured
environments, but existing methods have not been effective, and requirements for
effective sensors are unknown. This project aims to establish the foundation for
effective grasp stability prediction and control by developing new ways to integrate
machine learning with physical sensor models. Physical sensor models will be
characterized in grasping experiments and validated against independent lab
gold standard measurements. Physical models based on mechanical principles
(grasp analysis) will be augmented using parametric and nonparametric
machine learning methods, allowing interpretability and generalizability. Analysis
of these models will guide the creation of a new sensor suite that, together with the
carefully-crafted models, will form the basis for reliable robotic grasping systems.

Grasp Parameters In-Hand Lab Gold-Standard

Contact Location

Optical tracker (Atracsys 
Fusion Track 500, resolution: 
90 μm RMS) + geometry of 

fingertip & object

Joint angles (0.0219°/LSB) + 
kinematic models (±5 mm)

Surface Normal Optical Tracker + geometry 
of fingertip & object

Contact location (fingertip 
frame) + fingertip geometry 

+ kinematics

Contact Force/Torque
Force Torque sensor (ATI 

Nano17, resolution: 1/160N, 
1/32Nmm)

(same as in-hand)

Highly Instrumented Robotic Hand

Stochastic Friction Models for Practical Grasping and Manipulation

The coefficient of friction is a key component of reliable grasping and manipulation. It is typically estimated in
robotics applications using Coulomb’s law of friction as a constant coefficient of friction from the literature, even
though actual friction behavior is variable and depends on many factors. Here we conducted sliding
experiments with robot fingers and a hand, and show that rubber friction varies strongly with normal force Fn
and contact velocity v, and includes a significant stochastic component. We present a framework for
modeling the coefficient of friction μ as a distribution rather than a single constant and show how this
distribution can be narrowed when given a prior on Fn or v. For a given distribution, the likelihood of slipping is
a continuous function with respect to the tangential- to-normal force ratio, instead of a step function according
to Coulomb’s law. By modeling friction as a function of Fn and v, we demonstrate that friction parameters can
be estimated using regression models from a single sliding stroke of the fingertip against the object surface and
that strokes that span a larger range of Fn-v space provide better friction estimates. These results can be
applied to grasp control to enable a quantitative trade-off between the likelihood of slipping vs. grasp force
levels and to sliding manipulation planning by clarifying the relationship between desired velocity and
anticipated force levels. Application to machine learning has the potential to enhance reinforcement learning
and sim-to-real transfer by providing more accurate representations of frictional behavior.
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(A) Handheld experiment: a human operator holds a robot finger and slides across surfaces in varying contact force, velocity, and
contact location. (B) Robot hand experiment: the robot hand grasps an object and a human operator applies external force to cause
instability, leading to slips on one or more fingertip(s) without pushing the object out of the hand. (C) An example of using prior
information on Fn to narrow the distribution of μ. The top plot shows the likelihood of slip (raw data for the slip-to-non-slip ratio of
points in a certain Ft/Fn range) vs. Ft/Fn for all data for the heavyweight paper. The middle plot shows the ratio for the force range
1.8N < Fn < 2.4N. The bottom plot shows the probability density function of μ in the above plots.
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(D) An example of the variation of Ft/Fn during and across slipping episodes and the likelihood of slip from our model vs. Coulomb’s
model. Green highlights denote slipping intervals. Note that our model predicts !𝜇 with low error and reports a continuous likelihood of
slipping. (E) The coefficient of friction with respect to the normal force (top row), and contact velocity (bottom row) across four
materials. Dashed line shows linear regression to the data. (F) The mean and standard deviation of absolute error of the estimation of
the coefficient of friction for our linear regression model vs. Coulomb’s model. Our model outperforms Coulomb’s model in every case.
The results from the robot hand experiment are on par with the handheld experiment.

Improved Hybrid Grasp Parameter Estimation
- Pure end-to-end black-box machine learning and pure physics-based
methodologies in the literature have unsatisfactory performance when it comes
to high-accuracy grasp stability prediction

- Relaxing physics-based approach and improving grasp parameter estimation by
allowing noise-induced error terms, which can depend on forces/torques, on the
physical measurements and performing gradient descent (blue curve below)

- Further improvement using an ML-based estimation where we use our
optimized kinematics grasp parameters in addition to the joint angles and
forces/torques as inputs to an ML algorithm (green and red curves use those in
ridge regression, neural network respectively)

- Gold-standard grasp parameters, necessary for this ML-based improvement,
are obtained with the optical tracker. In the next figure, we observe a direct
improvement of the grasp parameter estimation where the ML algorithm was
trained on multiple objects and evaluated on a cube.

- Improving grasp parameter estimation is one step towards the actual goal of
grasp stability prediction

- We want to compare our hybrid approach to the physics-based one and a pure
ML approach, we decided to use SVM, which has proved to be very popular in
the existing grasp stability literature

- SVM involves no physics thus acting as a black box, while our hybrid model can
still benefit from the physics-based approach for grasp stability prediction
through the derivation of the friction convex hull from the contact locations and
surface normal

Improving Physics and ML Grasping

Gold standard
Optimized Kinematics Model
Kinematics + Ridge Regression
Kinematics + Neural Networks

Contact Location

Highlighted in yellow are instances when ML significantly improves upon the optimized kinematics
model. In the above experiment, an object is grasped in the robot hand and its stability is
disturbed via external force, causing the fingers to briefly slip (See Figure (B)). The spikes in the
blue curve are caused by external disturbance.


