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Introduction
What does a robot need to learn from, and eventually instruct, humans how to perform structured exercises (e.g. therapeutic and recreational)? Four
things: 1) a low-level trajectory learner, 2) a high-level policy learner, 3) a set of good metrics to evaluate human movements and 4) human-robot
interaction capabilities. We are currently working on the first two.

Low-Level Trajectory Learning from Demonstrations
State-of-the-Art: Three methods are prominent in learning trajectory.

- DMP: generates motion by modulating stable second order dynam-
ics with a non-linear forcing function. In case of large perturbations
a phase re-indexing method is required.

- SEDS: dynamic system based mapping of states to action. It
requires demonstrations throughout the state space to generate
meaningful trajectories.

- GMM: creates a statistical representation of the motion from sev-
eral demonstrations of the task. It is time dependant, can not
avoid obstacles or change the goal configuration online.

Phase Space Model (PSM): A New Way of Trajectory Learning

• The PSM uses piece-wise Phase Space Transition Functions
(PSTF)(equation 1) that drive an initial state to a desired phase
space states (position, velocity) [1].
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• Each PSTF contains a free parameter, which can be fit to the demon-
stration with regression.

• We applied the PSM to learn a variety of motions, including: feeding
a human, rolling a cylinder, and several therapeutic exercises.

• We have formulated a quadratic program that optimizes velocity pro-
file over a set of PSTFs according to an objective function [2].

A PSM-powered Yumi demonstrating therapeutic exercises
learned from a therapist

• The PSM approach includes several advantages over existing low-
level LfD approaches, namely time invariant dynamics, online obsta-
cle avoidance and goal adaptation, and the ability to optimize the
velocity profile as a quadratic program.

Broader Impacts
• LfD-powered robots with human-like anthropomorphism can be a

potential solution to the lack of ubiquitous availability of motor
rehabilitation services.

• Capstone project: Three undergraduate students are working on
the vision-based control of YuMi for playing ping-pong as their
Capstone project.

High-Level Policy Learning from Demonstrations
State-of-the-art: Reinforcement learning (RL), inverse-RL (IRL), and
deep RL (DRL) are among the most successful contemporary methods
for learning task-policies from human demonstrations.

- An ample amount of demonstrations, often hundreds, is needed to
build the dynamics of the model. Which is unrealistic in robotics
applications.

- RL-based methods require hand crafting the reward function.

- IRL-based methods are computationally expensive since they run
an RL algorithm in an inner loop.

MAximum entropy Policy LEarning (MAPLE): A New Way
of Learning High-level Policy MAPLE learns a policy through a
deeper understanding of how different actions (during demonstrations)
manipulate environmental features.

• MAPLE defines the task in terms of a set of easily identifiable
feature constraints and does not require knowing the complete task
dynamics from a large number of demonstrations.
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• It uses the principle of maximum entropy to derive the most ‘re-
laxed’ policy that only complies with the those feature constraints.

• Invoking features of various levels of specificity in policy learning
makes MAPLE sample efficient.

• MAPLE does not require learning or hand-crafting a reward func-
tion and therefore is computationally efficient.

We employed MAPLE to learn a tea-making task from demonstrations
[3]. MAPLE was able to produce a consistent policy after observing
different ways of making tea by five demonstrators.

(a-b) Demonstrations (c-d) Execution by Yumi

Performance of MAPLE
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