Robust Learning of Sequential Motion from Human Demonstrations to Enable Robot-guided Exercise Training

PI: Momotaz Begum¹; Co-PIs: Dain LaRoche² and Sajay Arthanat³; Award ID: 1830597

¹ Computer Science, ² Exercise Science, ³ Occupation therapy

University of New Hampshire

Challenge

What does a robot
need to learn this from an
expert and then teach
this to a patient?

Shoulder Press

Solution

- A robust trajectory learning algorithm: kinematics and dynamics
- A high-level policy learning algorithm
- An intuitive performance metric
- Good human-robot interaction ability

Scientific Impact

- Trajectory learning only from kinematic and kinetic variables
- Sample efficient policy learning

Broader Impact

- Motor rehabilitation service is critical for healthy living.
- Therapist shortage can be mitigated by leveraging robots that can learn from demonstrations