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Introduction
We focused on two research themes in 2020: i. Optimizing the PSM-learned trajectory and ii. Dealing with adversarial demonstrations. Our long-term
goals remains the same: designing robots that can learn therapeutic exercises from demonstrations.

Learning Optimized Trajectory through PSM
PSM: A DS-based trajectory learner: We designed PSM in 2019 [1].
The PSM uses piece-wise Phase Space Transition Functions (PSTF) that
drive an initial state to a desired phase space states (position, velocity).
PSM-learned trajectories are not optimized.

PSM-based Trajectory Learning as an Optimal Control Problem

• Inspired by human movement literature, we hypothesize that a tra-
jectory is optimal when the energy (
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functions as the basis functions of a trajectory. Three basis ob-
jective functions are then expressed in terms of PSM parameters:
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• The trajectory to be learned is defined as a linear combination of basis
functions. We learn the trajectory through optimizing torque, jerk, and
the trajectories of the robot’s joints with an iterative constrained linear
least squares method.

• Since PSM formulation explicitly considers robot’s dynamic parameters,
constraints on PSM parameters are be added to limit dynamic loads.
This allows natural adaption of learned motion to varying end-effector
loads.

• Since we currently rely on passive observation for demonstration data,
a correspondence matrix between robot and human demonstrator is
established using vector based mapping (fig. left)

• For clarity, we also express PSM parameters in rotated coordinate sys-
tem (fig. right).

(left) Vector-based correspondence generation (right) Change of
coordinate based on PCA (bottom) Experimental results

• We evaluated the new PSM formulation with different therapeutic exer-
cises and an ADL task. We also compared the performance with DMP
(fig. bottom)

Adversarial Demonstrations in High-Level LfD
Motivation:

• In Lfd research, a typical assumption is that the expert always pro-
vide correct demonstrations. Despite theoretical convenience, it has
limited practical value.

• Only a handful of LfD frameworks consider sub-optimal demonstra-
tions. However, all of them assume prior knowledge about which
demonstrations are sub-optima.

• We are interested in directly learning a sample-efficient policy after
autonomously identifying and discarding adversarial demonstrations
from the training set.

Robust Maximum Entropy Behavior Cloning (R-MaxEnt)

• From a demonstration set consisting of state-action pairs, we lever-
age feature expectation matching (FEM) and the maximum entropy
principle to identify a base model that provides the most unbiased
policy.

• We introduce a new weight variable to the base model to assign an
importance weight to each demonstration.

• Optimizing for weights that minimize the entropy leads to the min-
max problem that can be solved using Lagrange multiplier.
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• We evaluated R-MaxEnt on the classical control tasks Mountain-
Car and Acrobot in the OpenAi-Gym simulator [3]. Results were
compared against BC and a recent approach in IRL with two different
objective function; (1) Linear cost function from (FEM); (2) Game-
theoretic apprenticeship learning (GTAL). R-MaxEnt outperformed
all other methods in the presence of adversarial demonstrations.

R-MaxEnt Evaluation with Mountain-Car and Acrobot
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