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Challenges: Scientific Impact:

* Perception in the presence of constant changes * New probabilistic models for long-term perception

* Ability to autonomously reason about competence during
deployments

 Unexpected and unmodeled perceptual failures

 End-user customizability
* Novel learning paradigms for end-user customization

Broader Impact:

Solution:

Veloso, M., Biswas, J., Coltin, B., & Rosenthal, S.
(2015, June). CoBots: Robust symbiotic autonomous
mobile service robots. In Twenty-Fourth International
Joint Conference on Artificial Intelligence.

 Development of hands-on robotics courses: F1/10
Autonomous Driving, Autonomous Robots
https://www.joydeepb.com/teaching.html

* Semantically meaningful long-term probabilistic object
mapping
* Introspective perception for competence-aware autonomy

Biswas, J. (2019). The Quest For "Always-On"
Autonomous Mobile Robots. In Twenty-Eighth
International Joint Conference on Artificial Intelligence
Early Career Spotlight Talk

: : : . e Ability to deploy robots without expert supervision
* Visual representation learning and neuro-symbolic

program synthesis for customization

 Broader deployments of autonomous mobile service
robots in real human environments

Visual Representation Learning For Preference-
Aware Path Planning

Kavan Singh Sikand, Sadegh Rabiee, Adam Uccello, Xuesu Xiao, Garrett Warnell, Joydeep Biswas (2022). Visual
Representation Learning for Preference-Aware Path Planning. In Robotics and Automation (ICRA), IEEE International
Conference on

https://arxiv.org/abs/2109.08968

Probabilistic Object Maps for Long-Term Robot Localization

Amanda Adkins, Taijing Chen, Joydeep Biswas (2021). Probabilistic Object Maps for Long-Term Robot Localization. arXiv
Preprint arXiv:2110.00128

https://arxiv.org/abs/2110.00128

Competence-Aware Path Planning Via Introspective Perception

Sadegh Rabiee, Connor Basich, Kyle Hollins Wray, Shlomo Zilberstein, Joydeep Biswas (2022). Competence-Aware Path
Planning via Introspective Perception. IEEE Robotics and Automation Letters

https://arxiv.org/abs/2109.13974
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Fig. 2: Navigation competence predictor model architecture.
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Fig. 5: Plots of trajectories through UT Austin Lot 53 as estimated by the approaches with highlighted blue/green waypoints. Performance
of an approach is good when all estimates for a given waypoint are colocated. POM-Localization results are overlayed on a satellite view
and shown with aggregated object poses from all trajectories.
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Fig. 3: Absolute Trajectory Error (m) on KITTI dataset sequences for LeGO-LOAM and POM-Localization using observation models for

object detections and semantic segmentation.

(b) CDF of orientation estimate deviation.

+ig. 4: Position and orientation consistency across approaches. An

optimal algorithm would quickly rise to 1.

Fig. 7: Test environments in the real robot experiment (a) and the simulation experiment (b). Regions of the environments
highlighted in red cause catastrophic failures, regions highlighted in yellow illustrate sources of non-catastrophic failures,

and areas annotated with green, show areas where the robot can successfully operate autonomously.

simulation experiment and (b) in the real robot experiment
for this work (CPIP), SOTA (frequentist), and the baseline
with no competence-aware planning.

Pure Geometric >1.83% 24 4 > 4.56% 18 5 > 10.02 62

TABLE I: Mean Metrics in Primary Evaluation Environment.

than difference between anchor and similar image
patches
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