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Overview	
Goal: enable multiple co-robots to robustly and efficiently map and 
understand the environment on a semantic level 
•  Multiple heterogeneous robots share measurements and 

computational resources 
•  Incorporate semantic information (object detections) into 

mapping, enabling new types of measurements and richer maps 
that can be easily interpreted by humans 

•  Use the redundancy contained in cycles of multiple 
measurements to detect and correct inconsistencies 

•  Make intelligent use of the available resources through 
approximate computing 
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Goal: Bridge the gap between computation-intensive computer 
vision applications (object detection) and resource-limited and 
uncertain computation environments 
Principle: Approximate computing = dynamically change 
parameters of algorithm to different accuracy/computations 
•  Identify parameters dynamically depending on input, minimum 

desired accuracy, computational resources 
•  Exploit temporal correlation between frames 
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•  Scenarios: (1) Fixed parameters, (2) Random parameter 
selection, (3) MDP-based detection on each image, (4) Fixed 
parameter with tracking, and (5) MDP with tracking 

•  In images with low clutter (Fig. a), high clutter (Fig. b),  and 
poor illumination (Fig. c), MDP (Scenario 3)  performs better 
than fixed-parameter approach (Scenario 1) 
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Technical approach: Offline learning + MDP + detection/
tracking 
•  Identify offline parameters (e.g.,  

number of object proposals)  
that can increase speed with a  
tolerable loss of accuracy 

•  Identify correlation between classifier  
score and actual performance 

•  Learn selection policy based on a Markov Decision Process 
•  State: classifier score, current parameter selection 
•  Actions: choice of parameters among Pareto-optimal set 
•  Reward: ratio between classifier score and time 

•  Compute parameters at the beginning, then change based on 
estimated performance (classifier score) 

•  Integrate object tracking with object detection to speed up 

Results: Decrease in execution time by 20-70% for accuracy of 
100-98% on video datasets  

Motivation: In modern mapping solutions, it is often necessary 
to find links between different parts of a dataset, e.g., to handle 
tracking losses due to fast motions, loop closures. Object 
detections provide additional measurements and constraints. 
Goal: Obtain robust correspondences across parts of the map, 
despite perceptual aliasing (outliers), and provide localized 
estimates of the probability of errors. 
Principle: Exploit the redundancy contained in cycles of 
measurements, and use Expectation Maximization for 
estimating the probability that each measurement is an outlier 
Basic example: estimate absolute rotations from relative ones. 
•  Evidence: closure error on cycles (assumes Gaussian noise).  
•  Inference: estimate the covariances for inlier/outliers  

(M-step), together with the probability of outliers on each 
edge (E-step, approximated with loopy Belief  Propagation). 
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For instance, in a complete graph with 4 nodes there are 6 
independent cycles (a), leading to a Bayesian model (b). 
Results: We can perform accurate inference in a scalable and 
robust manner (e.g., 25 nodes, 100 edges, 76 cycles, <1min) 
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Flexible approach: it 
is applicable to both 
continuous (rotations, 
translations) and 
discrete (object 
detection) 
measurements 

Work in progress:  
•  Testing on mapping datasets including object detections 
•  Computational method to find out, a priori, whether for any 

given graph and outlier distribution, the outliers are uniquely 
identifiable (i.e., the true solution is recoverable). 


