CAREER: Robust Verification of Cyber Physical Systems (CPS)

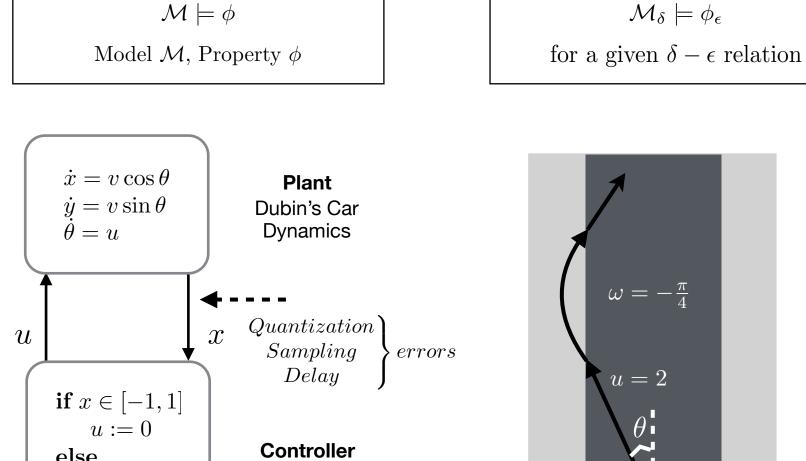
PI: Pavithra Prabhakar

Associate Professor, Department of Computer Science, Kansas State University, Manhattan, KS (pprabhakar@ksu.edu)

Robust verification

Guarantee system correctness even in the presence of perturbations.

Robust Verification Problem



Control logic for

autonomous driving

Classical Verification Problem

 $u := \omega$

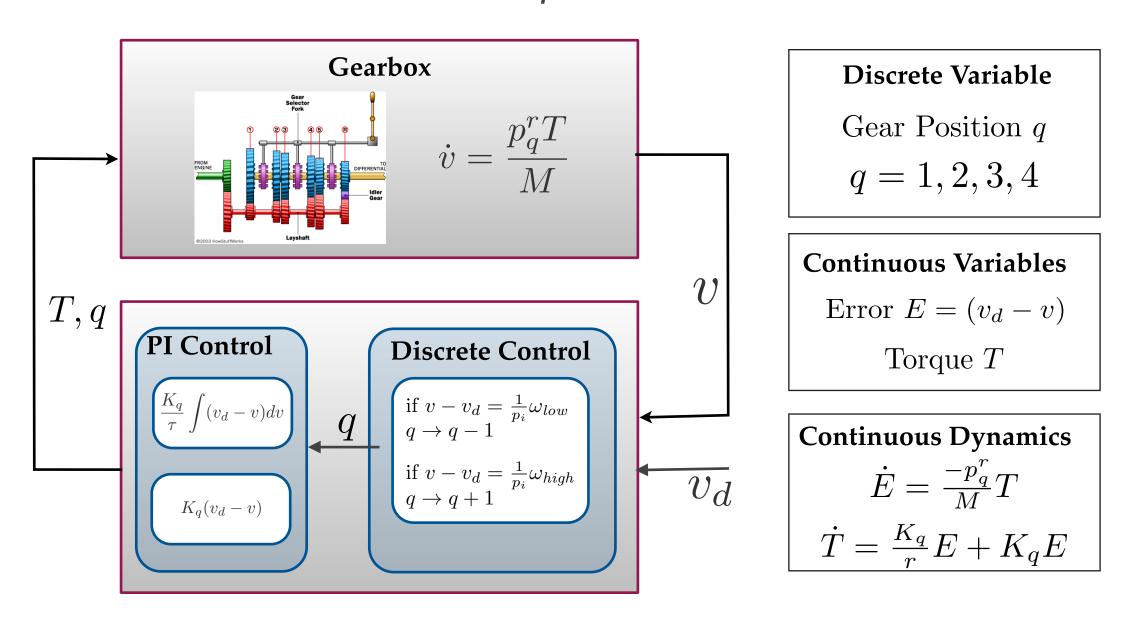
Autonomous vehicle controller

Challenges: Classical analysis techniques do not extend in a straight forward manner to the robust verification problem owing to its quantitative/ topological aspects.

Goal in autonomous driving: Keep the vehicle on the road even in the presence of perturbations due to quantization of sensor data, sampling and sensing, actuation or communication delays.

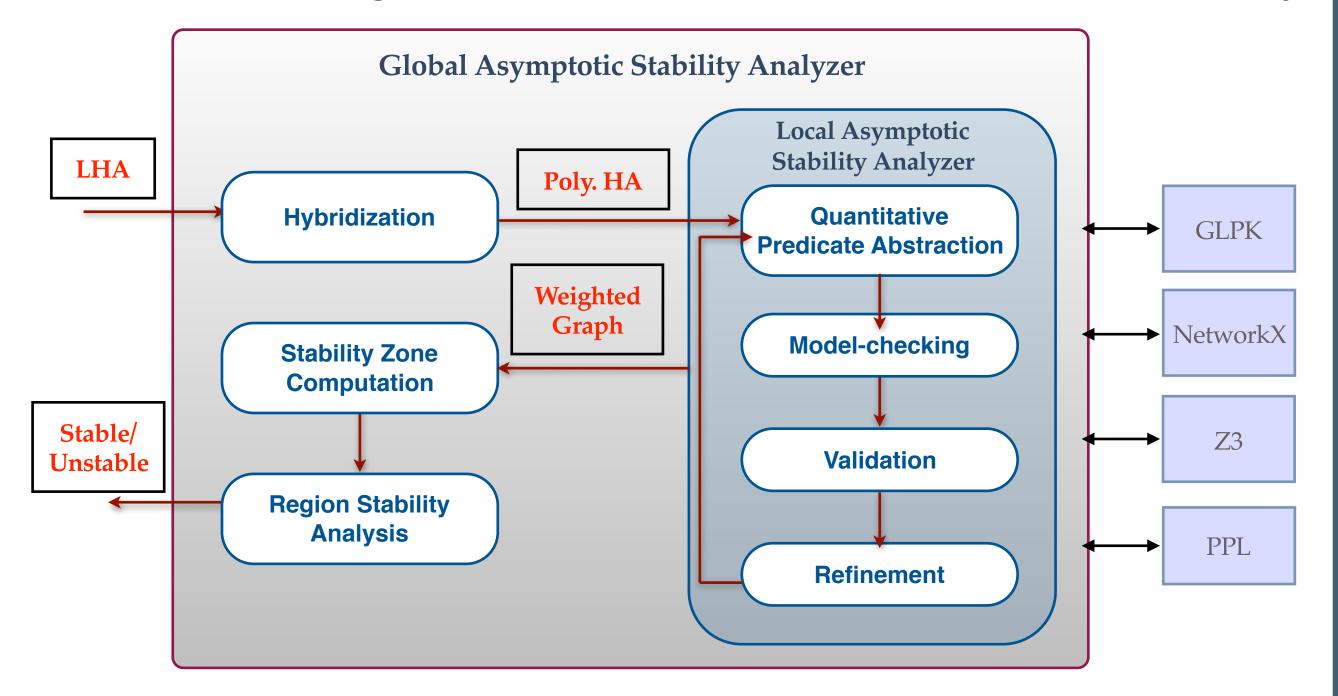
Stability in Cruise Control

Small perturbations in the initial state/input lead to small deviations in behavior.



Automatic Gearbox & Cruise Control: Maintain the velocity of the vehicle at the desired velocity.

AVERIST: Algorithmic Verifier for Stability

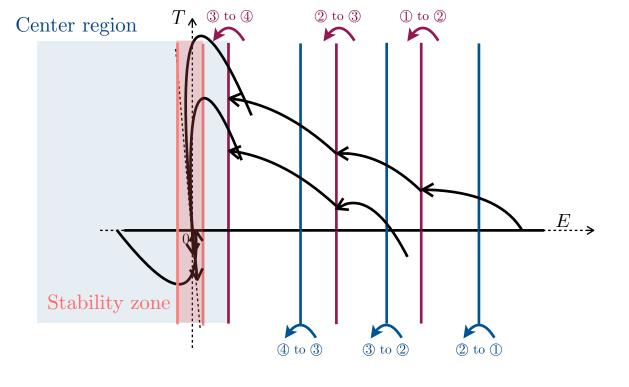


Tool webpage: http://software.imdea.org/projects/averist/

Analysis

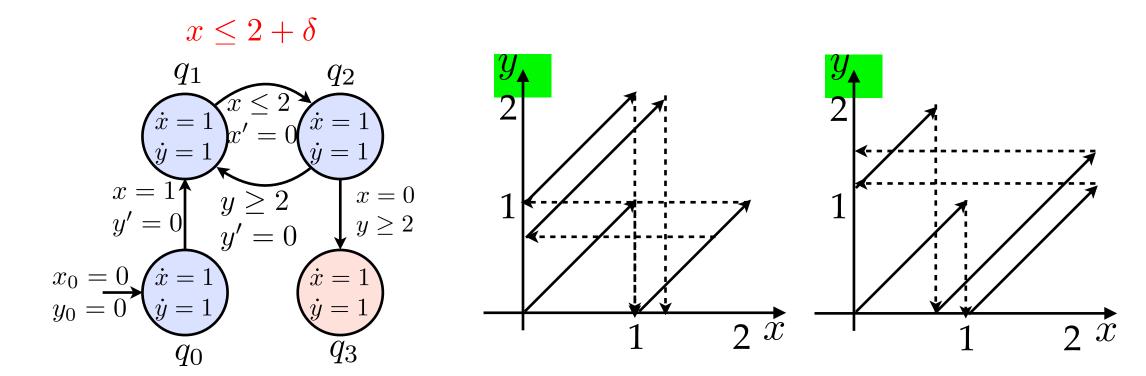
		AVERIST			STABHYLI		
Dimension/ name		Regions	Runtime	Proved Stability	Degree	LF found	Runtime
2D	AS1	129	31	Yes	6	Yes	8
	SS4 1	9	<1	Yes	8	-	452
	SS8 1	17	<1	Yes	6	-	443
	SS16 1	33	1	Yes	4	-	177
3D	AS 4	147	194	Yes	6	_	410
	SS4 4	771	484	Yes	2	Yes	75
	SS8 4	771	470	Yes	2	Yes	15
	SS16 4	771	568	Yes	2	Yes	138
4D	AS 7	81	625	Yes	2	-	12
	SS4 7	81	119	Yes	2	-	101
	SS8 7	153	234	Yes	2	_	1071
	SS16 7	297	533	Yes	2	-	339
	AS 9	_	out	No	4	Yes	34
	SS4 9	81	125	Yes	4	_	105
	SS8 9	153	247	Yes	2	_	16

- 1. Linear to polyhedral dynamics abstraction.
- 2. QPA to prove local asymptotic stability.
- 3. Stability zone construction using QPA.
- 4. Region stability with respect to stability zone.



- Averist proves stability in many more cases than Stabhyli.
- AVERIST is more numerically stable.
- * AVERIST is easily amenable to parallelization.

Clock Drifts & Guard Perturbations



Observations:

- Small syntactic perturbations can lead to large semantic perturbations.
- The timed automaton is safe (does not reach the green region), but any small perturbation of its guards violates safety.

Problems:

- Are there restrictions under which small syntactic perturbations lead to small semantic deviation?
- Can we decide if there is a small syntactic perturbation under which the systems satisfies a given property?

Decidability of Robust Verification

Omega Regular Property verification for timed automata:

Does every execution of the system reach a final state infinitely often? $\mathcal{M} \models \Box \Diamond F$?

Satisfaction with clock drifts and perturbed guards: $\exists \epsilon > 0, \delta > 0, \mathcal{M}^{\epsilon}_{\delta} \models \Box \Diamond F$?

Theorem: A system satisfies an omega regular property for some positive clock drifts and guard perturbations if and only if it satisfies the omega regular property for some positive clock drifts.

$$\exists \epsilon > 0, \delta > 0, \mathcal{M}_{\delta}^{\epsilon} \models \Box \Diamond F \Leftrightarrow \exists \delta' > 0, \mathcal{M}_{\delta'} \models \Box \Diamond F$$

The robust model-checking problem with only perturbations to the guards is shown to be decidable by Bouyer et al.

Corollary: The robust ω-regular model checking problem when both guards and clocks are perturbed is PSPACE-complete.

Theorem: Reachable sets under infinitesimal clock perturbations can be computed in space polynomial in the size of the timed automata.

Syntactic vs Semantic Perturbations

 $Dist(\mathcal{M}_1, \mathcal{M}_2)$: smallest ϵ such that $\mathcal{M}_1 \prec_{\epsilon,k} \mathcal{M}_2$ (ϵ simulation up to k steps)

Theorem: Given \mathcal{M} defined using bounded continuous functions, for every $\epsilon > 0$ and bound k, there exists $\delta > 0$ such that $Dist_k(\mathcal{M}, \mathcal{M}_{\delta}) \leq \epsilon$.

Key Technical Result: Every predicate can be arbitrarily over-approximated

 $\forall \epsilon > 0, \exists \delta > 0, \llbracket \varphi^{\delta} \rrbracket \subseteq B_{\epsilon}(\llbracket \varphi \rrbracket)$

 $Dist_k$ is a continuous operator on the space of hybrid automata **Broad idea:**

Completeness of counter-example validation and Delta complete bounded verification problem:

 δ -Complete Decision Problem:

Input: System \mathcal{M} , bound k, perturbation δ and unsafe set U

Output: $Reach_k(\mathcal{M}) \cap U = \emptyset$ or $Reach_k(\mathcal{M}_{\delta}) \cap U \neq \emptyset$

Theorem: Given \mathcal{M} , a bound k and an unsafe predicate U, $Reach_k(\mathcal{M}) \cap U = \emptyset$ implies $\exists \delta > 0, Reach_k(\mathcal{M}_{\delta}) \cap U = \emptyset.$

Future Research

- * Hybridization for stability analysis of non-linear hybrid automata, where non-linear dynamics is abstracted to linear inclusion dynamics.
- Compositional analysis of stability for hybrid systems.
- * Formal synthesis of switching logic for stability objectives, including periodically switched systems.
- Stochastic hybrid systems verification where uncertainties are captured as stochastic elements.

Research Outputs:

- M. G. Soto, P. Prabhakar. Averist: Algorithmic Verifier for Stability of Linear Hybrid Systems. 21st Hybrid Systems: Computation and Control (HSCC), 2018.
- N. Roohi, P. Prabhakar, M. Viswanathan. Relating Syntactic and Semantic Perturbations of Hybrid Automata. 29th International Conference on Concurrency Theory (CONCUR), 2018.
- A. Kundu, M. G. Soto, P. Prabhakar. Formal Synthesis of Stabilizing Controllers for Periodically Controlled Linear Switched Systems. 5th Indian Control Conference (ICC), 2018.
- P. Prabhakar, M. G. Soto. Formal Synthesis of Stabilizing Controllers for Switched Systems. 20th Hybrid Systems: Computation and Control (HSCC), 2017.
- N. Roohi, P. Prabhakar, M. Viswanathan. Robust Model Checking of Timed Automata under Clock Drifts. 20th Hybrid Systems: Computation and Control (HSCC), 2017.