
Robust and Efficient Physics-based Learning and Reasoning in Degraded Environments

Abdeslam Boularias Jingjin Yu Mridul Aanjaneya
Rutgers University

Next	action

Semantic	Segmentation
RGB-D	sensor

Shape	Completion

Planning

Ph
ys
ics

	E
ng
in
e

State	Estimation

Physical	Model	Identification

Images

• We propose to develop and integrate model learning, simulation, and planning algorithms to enable the deployment of robots to unstructured and
cluttered environments that occur around disaster sites.

• Specifically, we propose novel algorithms that can learn models of objects on the fly, quickly simulate the reactions of objects to robotic actions, and
plan safe decluttering and navigation strategies accordingly, while accounting for partial knowledge and uncertainty.

Award ID# 21329722022 NRI & FRR Principal Investigators' Meeting
April 19-21, 2022

Overview of the integrated system with the four-legged RoboMantis .

General Material Models Differentiable Physics Adaptive Data Structures
+ Reduced-order Models

Cloud Computing

Model identification with Bayesian Optimization.

Visual Foresight Tree for Object Retrieval from Clutter with Nonprehensile Rearrangement

Baichuan Huang Shuai D. Han Jingjin Yu Abdeslam Boularias

Abstract— This paper considers the problem of retrieving

an object from a set of tightly packed objects by using a

combination of robotic pushing and grasping actions. Object

retrieval from confined spaces that contain clutter is an

important skill for robots in order to effectively operate in

households and everyday environments. The proposed solution

consists in re-arranging the clutter that surrounds the target

object so that it can be grasped easily. Clutter rearrangement

is performed through nonprehensile actions, such as pushing

and sliding. Rearrangement with nested nonprehensile actions is

challenging as it requires predicting complex object interactions

in a combinatorially large configuration space of multiple

objects. We first show that a deep neural network can be

trained to accurately predict the poses of the packed objects

when the robot pushes one of them. The predictive network

provides visual foresight and is used in a tree search as a state

transition function in the space of scene images. The tree search

returns a sequence of consecutive push actions that result in

the best arrangement of the clutter for grasping the target

object. Experiments in simulation and using a real robot and

objects show that the proposed approach outperforms model-

free techniques as well as model-based myopic methods both

in terms of success rates and number of executed actions, on

several challenging tasks.

I. INTRODUCTION

In many application domains, robots are tasked with
retrieving objects that are surrounded by multiple tightly
packed objects. As a result, the objects to retrieve cannot be
directly grasped due to the lack of free space for inserting a
gripper around them. Therefore, the robot needs to re-arrange
the scene to create sufficient clearance around the target object
before attempting to grasp it. Scene rearrangement can be
achieved through a sequence of small horizontal nested push
actions that can move multiple objects simultaneously. In
this paper, we address the problem of finding the minimum
number of push actions that lead to a scene where the target
object can be grasped and retrieved.

To solve the object retrieval problem, the robot must
imagine how the scene would look like after any given
sequence of pushing actions, and select the shortest sequence
that leads to a state where the target object can be grasped.
The huge combinatorial search space makes this problem
computationally challenging, hence the need for efficient
planning algorithms, as well as fast predictive models that
can return the predicted future states in a few milliseconds.
Moreover, objects in clutter typically have unknown mechani-
cal properties such as mass and friction coefficients. While it
is possible to utilize off-the shelf physics engines to simulate
contacts and collisions of rigid objects in clutter, simulation
is highly sensitive to the accuracy of the provided mechanical

B. Huang, S. D. Han, J. Yu, and A. Boularias are with the Depart-
ment of Computer Science, Rutgers, the State University of New Jersey,
Piscataway, NJ, USA. Emails: {baichuan.huang, shuai.han,
jingjin.yu, abdeslam.boularias}@rutgers.edu.

(a) Hardware setup

(b) First push

(c) Second push

(d) Third push

(e) Grasp
Fig. 1: (a) The hardware setup for object retrieval in a clutter includes a
Universal Robots UR-5e manipulator with a Robotiq 2F-85 two-finger gripper,
and an Intel RealSense D435 RGB-D camera. The objects are placed in a
square workspace. (b)(c)(d) Three push actions (shown with green arrows)
are used to create space accessing the target (purple) object. The push
directions are toward top-left, top-right, and bottom-right, respectively. (e)
The target object is successfully grasped and retrieved.

parameters. To overcome the problem of manually specifying
these parameters, and to enable full autonomy of the robot,
most recent works on object manipulation utilize machine
learning techniques to train predictive models from data [1]–
[3]. The predictive models take as input the state of the robot’s
environment and a control action, and predict the state after
applying the control action.

In this work, we propose to employ visual foresight trees
(VFT) to address the computational and modeling challenges
related to the object retrieval problem. The core component of
the proposed solution is a deep neural network that predicts
future images of the clutter that result from multiple pushing
actions. A second neural network is used to evaluate the
graspability of the target object in predicted future images.
A Monte Carlo tree search utilizes the two neural networks
to obtain the shortest sequence of pushing actions that lead
to an arrangement where the target can be grasped.

To the best of our knowledge, the proposed technique is
the first model-based learning solution to the object retrieval
problem. Extensive experiments on the real robot and objects
shown in Fig. 1 demonstrate that the proposed approach
succeeds in retrieving target objects with manipulation
sequences that are shorter than model-free reinforcement
learning techniques and a limited-horizon planning technique.

is the same as the next action’s start location. In all scenes,
the target object is roughly at the center of the scene.

The hyperparameters for VFT are set as follows. The
number of iterations Nmax is set to 150. The discount factor
is set as � = 0.8. The maximum depth D⇤ of the tree is
capped at 4. The terminal threshold of grasp reward is set as
R⇤

gp = 1.0. Threshold R⇤
g that decides to grasp or to push is

0.8 in the simulation experiments and 0.7 in the real hardware
experiments.
B. Network Training Process

VFT contains two deep neural networks: GN and DIPN.
Both are trained in simulation to capture the physical proper-
ties and dynamics of the environment. No prior knowledge
is given to the networks except the dimensions of the gripper
fingers. GN is trained on-policy with 20,000 grasp actions.
Similar to [38]–[40], randomly-shaped objects are uniformly
dropped onto the workspace to construct the training scenarios.
DIPN [40] is trained in a supervised manner with 200,000
random push actions from simulation. In the push data set,
20% of the scenes contain randomly placed objects, and 80%
contain densely packed objects. A Huber loss of 2 is used.

We note that a total of 2000 actions (500 grasps and
1500 pushes) are sufficient for the networks to achieve fairly
accurate results (see, e.g., [40]). Because training samples
are readily available from simulation, it is not necessary to
skimp on training data. We thus opted to train with more
data to evaluate the full potential of VFT.
C. Compared Methods and Evaluation Metrics

Goal-Conditioned VPG (gc-VPG). Goal-conditioned
VPG (gc-VPG) is a modified version of Visual Pushing
Grasping (VPG) [39], which uses two DQNs [42] for pushing
and grasping predictions. VPG by itself does not focus on
specific objects; it was conditioned [38] to focus on the target
object to serve as a comparison point, yielding gc-VPG.

Goal-Oriented Push-Grasping. In [38], many modifica-
tions are applied to VPG to render the resulting network more
suitable for solving ORC, including adopting a three-stage
training strategy and an efficient labeling method [43]. For
convenience, we refer to this method as go-PGN (the authors
of [38] did not provide a short name for the method).

DIPN. As an ablation baseline for evaluating the utility
of employing deep tree search, we replace MCTS from VFT
with a search tree of depth one. In this baseline, DIPN is
used to evaluate all candidate push actions. The push action
whose predicted next state has the highest grasp reward for
the target object is then chosen. This is similar to how DIPN
is used in [40]; we thus refer to it simply as DIPN.

In our evaluation, the main metric is the total number of
push and grasp actions used to retrieve the target object. For
a more complete comparison to [38], [39], we also list VFT’s
grasp success rate, which is the ratio of successful grasps in
the total number of grasps during testing. The completion
rate, i.e., the chance of eventually grasping the target object,
is also reported. Similar to [40], when DIPN is used, a 100%
completion rate often reached.

We only collected evaluation data on DIPN and VFT. For
the other two baselines, gc-VPG and go-PGN, results for

are directly quoted from [38] (at the time of our submission,
we could not obtain the trained model or the information
necessary for the reproduction of gc-VPG and go-PGN).
While our hardware setup (robot, gripper, camera, and objects)
is identical to that of [38], and the poses of objects are
also identical, we note that there are some small differences
between the evaluation setups: 1) We use PyBullet [46] for
simulation, while [38] uses CoppeliaSim [47]; the physics
engine is the same (Bullet). 2) [38] uses an RD2 gripper in
simulation and a Robotiq 2F-85 gripper for real experiment;
all of our experiments use 2F-85. 3) [38] has a 13cm push
distance, while we only use a 5cm effective distance (the
distance where fingers touch the objects) 4) [38] uses extra
top-sliding pushes which expand the push action set. At the
same time, we confirm that these relatively minor differences
do not provide our algorithm any unfair advantage.
D. Simulation Studies

Fig. 6 and Table. I show the evaluation results of all
algorithms on the 10 simulation test cases from [38]. Each
experiment is repeated 30 times, and the average number of
actions until task completion in each experiment is reported.
Our proposed method, VFT, which uses an average of 2.00
actions, significantly outperforms the compared methods.
Specifically, VFT uses one push action and one grasp action
to solve the majority of cases, except for one instance with a
half-cylinder shaped object, which is not included during the
training of the networks. Interestingly, when only one push
is necessary, VFT, with its main advantage as multi-step
prediction, still outperforms DIPN due to its extra simulation
steps. The algorithms with push prediction performs better
than gc-VPG and go-PGN in all metrics.

Completion Grasp Success Number of Actions
gc-VPG 89.3% 41.7% 5.78

go-PGN 99.0% 90.2% 2.77

DIPN 100% 100% 2.30

Proposed 100% 100% 2.00

TABLE I: Simulation results for the 10 test cases from [38].

To probe the limit of VFT’s capability, we evaluated the
methods on harder cases demanding multiple pushes. The
test set includes 18 manually designed instances and 4 cases
from [38] (see Fig. 5). As shown in Fig. 7 and Table. II, VFT
uses fewer actions than DIPN as VFT looks further into the
future. Though we could not evaluate the performance of gc-
VPG and go-PGN on these settings for a direct comparison
because we could not obtain the information necessary for the
reproduction of these systems, notably, the average number
of actions (2.45) used by VFT on harder instances is even
smaller than the number of actions (2.77) go-PGN used on
the 10 simpler cases.

Completion Grasp Success Num. of Actions
DIPN [40] 100% 98.3% 4.31

VFT (ours) 100% 98.8% 2.45

TABLE II: Simulation result for the 22 test cases in Fig. 5.

E. Evaluation on a Real System
We repeated the 22 hard test cases on a real robot system

(Fig. 1a). Both VFT and DIPN are evaluated. We also bring

Fig. 5: 22 Test cases used in both simulation and real world experiments. The target objects are blue. Images are zoomed in for better visualization.

Fig. 6: Simulation results per test case for the 10 problems from [38]. The
horizontal axis shows the average number of actions used to solve a problem
instance: the lower, the better.

Fig. 7: Simulation result per test case for the 22 harder problems (Fig. 5).
The horizontal axis shows the average number of actions used to solve a
problem instance: the lower, the better.

the experiment result from [38] on its 4 real test cases for
comparison. All cases are repeated at least 5 times to get the
mean metrics. The result, shown in Fig. 8, Table. III, and
Table. IV closely matches the results from simulation. We
observe a slightly lower grasp success rate due to the more
noisy depth image on the real system. The real workspace’s
surface friction is also different from simulation. However,
VFT and DIPN can still generate accurate foresight.

Fig. 8: Real experiment results per test case for the 22 harder problems
(Fig. 5). The horizontal axis shows the average number of actions used to
solve a problem instance: the lower, the better.

Completion Grasp Success Num. of Actions
DIPN [40] 100% 97.0% 4.78

VFT (ours) 100% 98.5% 2.65

TABLE III: Real experiment results for the 22 Test cases in Fig. 5.

We also explored our system on everyday objects (Fig. 9),
where we want to retrieve a small robotic vehicle surrounded

Completion Grasp Success Num. of Actions
go-PGN 95.0% 86.6% 4.62

DIPN 100% 100% 4.00

Proposed 100% 100% 2.60

TABLE IV: Real experiment results for cases 19 to 22 in Fig. 5.

by soap boxes. Without seeing neither the soap boxes nor
the small vehicles, the robot is able to strategically push the
soap boxes away in two moves only and retrieve the vehicle.

Fig. 9: Test scenario with soap boxes and masked 3D printed vehicle. Two
push actions and one grasp action.

We report that the running time to decide one push action is
around 2 minutes when the number of MCTS iterations is set
to be 150. In this letter, our main focus is action optimization.

VII. CONCLUSION AND DISCUSSIONS

In conclusion, through an organic fusion of DIPN and
MCTS, VFT is able to make high quality multi-horizon
prediction for optimized object retrieval from dense clutter.
The effectiveness of VFT is convincingly demonstrated with
extensive evaluation. As to the limitations of VFT, because
of the large MCTS tree that needs to be computed, the time
required is relatively long. This can be improved with multi-
threading because the rollouts have sufficient independence.
Currently, only a single thread is used to complete the MCTS.
It would also be interesting to develop a network for directly
estimating the reward for rollout policy, which would certainly
reduce the inference time.

REFERENCES

[1] D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi, “Dream to control:
Learning behaviors by latent imagination,” in International Conference
on Learning Representations, 2020.

[2] F. Ebert, C. Finn, S. Dasari, A. Xie, A. X. Lee, and S. Levine, “Visual
foresight: Model-based deep reinforcement learning for vision-based
robotic control,” CoRR, vol. abs/1812.00568, 2018.

[3] Muhayyuddin, M. Moll, L. Kavraki, and J. Rosell, “Randomized
physics-based motion planning for grasping in cluttered and uncertain
environments,” IEEE Robotics and Automation Letters, vol. 3, no. 2,
pp. 712–719, April 2018.

[4] J. Bohg, A. Morales, T. Asfour, and D. Kragic, “Data-driven grasp
synthesis—a survey,” Trans. Rob., vol. 30, no. 2, p. 289–309, Apr.
2014.

[5] A. Bicchi and V. Kumar, “Robotic grasping and contact: A review.”
Proceedings - IEEE International Conference on Robotics and Automa-
tion 1, 2000.

[6] H. Liang, X. Ma, S. Li, M. Görner, S. Tang, B. Fang, F. Sun, and
J. Zhang, “PointNetGPD: Detecting grasp configurations from point

Fig. 5: 22 Test cases used in both simulation and real world experiments. The target objects are blue. Images are zoomed in for better visualization.

Fig. 6: Simulation results per test case for the 10 problems from [38]. The
horizontal axis shows the average number of actions used to solve a problem
instance: the lower, the better.

Fig. 7: Simulation result per test case for the 22 harder problems (Fig. 5).
The horizontal axis shows the average number of actions used to solve a
problem instance: the lower, the better.

the experiment result from [38] on its 4 real test cases for
comparison. All cases are repeated at least 5 times to get the
mean metrics. The result, shown in Fig. 8, Table. III, and
Table. IV closely matches the results from simulation. We
observe a slightly lower grasp success rate due to the more
noisy depth image on the real system. The real workspace’s
surface friction is also different from simulation. However,
VFT and DIPN can still generate accurate foresight.

Fig. 8: Real experiment results per test case for the 22 harder problems
(Fig. 5). The horizontal axis shows the average number of actions used to
solve a problem instance: the lower, the better.

Completion Grasp Success Num. of Actions
DIPN [40] 100% 97.0% 4.78

VFT (ours) 100% 98.5% 2.65

TABLE III: Real experiment results for the 22 Test cases in Fig. 5.

We also explored our system on everyday objects (Fig. 9),
where we want to retrieve a small robotic vehicle surrounded

Completion Grasp Success Num. of Actions
go-PGN 95.0% 86.6% 4.62

DIPN 100% 100% 4.00

Proposed 100% 100% 2.60

TABLE IV: Real experiment results for cases 19 to 22 in Fig. 5.

by soap boxes. Without seeing neither the soap boxes nor
the small vehicles, the robot is able to strategically push the
soap boxes away in two moves only and retrieve the vehicle.

Fig. 9: Test scenario with soap boxes and masked 3D printed vehicle. Two
push actions and one grasp action.

We report that the running time to decide one push action is
around 2 minutes when the number of MCTS iterations is set
to be 150. In this letter, our main focus is action optimization.

VII. CONCLUSION AND DISCUSSIONS

In conclusion, through an organic fusion of DIPN and
MCTS, VFT is able to make high quality multi-horizon
prediction for optimized object retrieval from dense clutter.
The effectiveness of VFT is convincingly demonstrated with
extensive evaluation. As to the limitations of VFT, because
of the large MCTS tree that needs to be computed, the time
required is relatively long. This can be improved with multi-
threading because the rollouts have sufficient independence.
Currently, only a single thread is used to complete the MCTS.
It would also be interesting to develop a network for directly
estimating the reward for rollout policy, which would certainly
reduce the inference time.

REFERENCES

[1] D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi, “Dream to control:
Learning behaviors by latent imagination,” in International Conference
on Learning Representations, 2020.

[2] F. Ebert, C. Finn, S. Dasari, A. Xie, A. X. Lee, and S. Levine, “Visual
foresight: Model-based deep reinforcement learning for vision-based
robotic control,” CoRR, vol. abs/1812.00568, 2018.

[3] Muhayyuddin, M. Moll, L. Kavraki, and J. Rosell, “Randomized
physics-based motion planning for grasping in cluttered and uncertain
environments,” IEEE Robotics and Automation Letters, vol. 3, no. 2,
pp. 712–719, April 2018.

[4] J. Bohg, A. Morales, T. Asfour, and D. Kragic, “Data-driven grasp
synthesis—a survey,” Trans. Rob., vol. 30, no. 2, p. 289–309, Apr.
2014.

[5] A. Bicchi and V. Kumar, “Robotic grasping and contact: A review.”
Proceedings - IEEE International Conference on Robotics and Automa-
tion 1, 2000.

[6] H. Liang, X. Ma, S. Li, M. Görner, S. Tang, B. Fang, F. Sun, and
J. Zhang, “PointNetGPD: Detecting grasp configurations from point

The material point method (MPM) is used for simulating the rubble, which can
accommodate general material models and avoids costly remeshing operations with
topology changes. We integrate this simulator inside a neural network for automatically
inferring the material parameters of objects from sensor data. The framework uses
adaptive data structures and reduced-order models for reducing the computational
overhead, and the computing cloud for energy efficiency.

Preliminary results:
Rendering of a
vehicle driving on
mud simulated using
hybrid MPM.

Preliminary results: Object retrieval from clutter using learned models

