

Massachusetts Institute of Technology

Concerns in Current and Future Power Grid:

- 1- Non-decreasing Trend of Large Blackouts and their Impacts;
- 2- Extra Fluctuations due to Integrating Renewable Energy and
- Electric Vehicles.

Necessity for a Wide Area Monitoring and Control System

Requires a Communication Network

Ratio of Yield in Interdependent Power Grid to Single Power Grid

Robustness of Interdependent Cyber-Physical Networks Marzieh Parandehgheibi

marp@mit.edu

Modeling Interd

Dependency of Communication on Power

- Modeling the Impact of Loss of Power
 - 1) Deterministic Failure: All communicati receive power from power grid
 - 2) Probabilistic Failure: Some communica have backup generator
 - 3) Time Dependent Failure Model: Some communication nodes have backup battery

Modeling the Impact of Loss of Communication Nodes: Either Disconnection or Congestion

Developi

Centralized Control

- Impact of Loss or Delay in Communication Control
- Types of Control:
 - 1) General Load Shedding: Mitigating cascad both inside and between networks
 - 2) Frequency Control: e.g. AGC
- 3) New Technologies: e.g. FACTS

Analysis

Impact of Interdependency and Control

- Defining Metrics:
 - 1) Percentage of Unserved Load
 - 2) Percentage of Failed Elements
 - 3) Connectivity
- Finding the Most Vulnerable and Robust > Statistical Analysis of Vulnerable and Ro

References:

1- M. Parandehgheibi and E. Modiano, "Optimal Control Policy for Mitigating Failures in Interdependent Power grids and communication networks", To be submitted.

2-M. Parandehgheibi and E. Modiano, "Robustness of Interdependent Networks: The case of communication networks and the power grid", Global Communications Conference (GLOBECOM), IEEE, December 2013, Atlanta, GA. Acknowledgement: This work has been funded by DTRA grants HDTRA-09-1-005 and HDTRA1-13-1-0021

will be Monitored and Controlled via Communication

Control center

Communication link /

Challenge 1 dependency and Cascading Failures	
<u>r Grid</u>	Dependency of Power Grid on Communication
ion nodes ation nodes	 Modeling the Impact of Loss of Monitoring/Co 1) Deterministic Failure: As a local control deci 2) Probabilistic Failure: a) Loss of Control on Generators – Frequency Co b) Loss of Control on Loads – Voltage Collapse Modeling the Impact of Delay on Monitoring/Co
y inication	Wodening the impact of Delay on Wontoring/C
Challenge 2 ing Optimal Control Policies	
	Distributed Control
on on	Operators in Different Regions Do Not Share D
le of failures	 Regional Control Policy with Limited Information Minimum Requirement for Information Sharing Regulation Policies to Increase Incentives of Open Data Sharing
Challenge 3 Analysis and Design	
	<u>Design</u>
	 Power Grid Improvement: 1) Adding New Transmission Lines 2) Increasing the Capacity of Current Transmission L
	 Interdependency Design: Decrease Dependency 1) Increasing Redundancy 2) Increasing Backup Batteries/Generators
Areas obust Areas	Communication Design: Increasing Redundancy to Guarantee Connectivity Decrease Congestion

toring/Control

ntrol decision

quency Collapse Collapse

nitoring/Control

t Share Data

nformation Sharing es of Operators for

smission Lines

nnectivity and