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1.0 PROJECT SUMMARY 
Smart Information Flow Technologies (SIFT) LLC, Carnegie-Mellon University, and Oxford 

University have developed PRISMATIC, a unified tool and technique for formal design 
verification to address the challenges of verifying complex cyber-physical system designs before 
manufacturing and testing. The extreme complexity of modern cyber-physical systems such as 
ground combat vehicles and military aircraft, makes their design and manufacture very difficult 
and time consuming. The META program aims to improve the process of building 
cyber-physical systems by developing new model-based design flows and tools that can capture 
all functional and logical aspects of a system design, allowing design-time verification of system 
behavioral properties. 

Verification of entire cyber-physical systems poses several key challenges, including 
heterogeneous designs that span cyber and physical domains; uncertainty in component 
reliability and partially-sensed, uncontrollable environments; and large-scale designs with 
operating state spaces far larger than can be handled by existing verification approaches. To meet 
these challenges we developed PRISMATIC, a workflow/process and tool that can generate 
probabilistic “certificates of correctness” for entire large-scale cyber-physical systems such as 
ground combat vehicles or aircraft. Our team had previously developed several ground-breaking 
verification methods and state-of-the art open-source verification tools. We built on these 
existing tools and develop unique new capabilities for scaling through compositionality to meet 
the challenges of cyber-physical system design and manufacturing flow. 

The core of PRISMATIC is based on Oxford’s PRISM system, already the leading 
probabilistic verification tool in terms of functionality, efficiency and adoption. PRISM’s 
analytic probabilistic verification techniques work well for some types of models, but can be 
overwhelmed by very large state spaces. SIFT and Carnegie Mellon had developed statistical 
probabilistic verification techiques that do not rely on analytic state space reasoning, but reason 
adaptively about Monte Carlo samples (traces) of system execution. For PRISMATIC we scaled 
these statistical verification techniques to much larger state spaces, and have the added advantage 
of needing only a system simulation or testbed (rather than a formalized, analyzable model). 
Thus PRISMATIC can verify hybrid cyber-physical systems through integration with other 
simulation frameworks, such as the engineering industry standard MATLAB® Simulink® 
system. Carnegie Mellon has also provided non-probabilistic, BDD-based and SAT-based 
verification capabilities that can be used to verify properties of the digital components of 
cyber-physical systems. In addition to these complementary exact and probabilistic verification 
techniques within the tool itself, PRISMATIC also reasons about other design domains such as 
mechanical and thermal models by interfacing to existing domain-specific verifiers. 
We developed several novel techniques to address specific verification challenges: 

• Compositional, hierarchical reasoning that decomposes an overall system verification 
problem into a combination of subproblems, mitigating the state space explosion 
problem.  

• Counterexample and culprit identification that provides debugging and re-design 
guidance to users when a system design is not verified to meet its requirements.  

• Incremental verification that preserves partial verification results, dramatically speeding 
up re-verification after design changes in the design and redesign cycle. 
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The resulting PRISMATIC tool provides a verification flow for cyber-physical systems that 
reasons about entire cross-domain designs and is optimized for its role in the iterative 
design-verify-revise cycle. PRISMATIC should reduce system verification time by at least a 
factor of five, enabling the overall META program to dramatically reduce the cost and time for 
cyber-physical system development. 

Our goals for this phase were that PRISMATIC should efficiently perform several key 
probabilistic verification functions on a given complex cyber-physical system design: 

• Calculation of a probabilistic “certificate of correctness” that the system satisfies the 
design requirements to a given level of confidence.  

• Conversely, calculation of the required design component behavioral constraints that 
will achieve a desired system-level certificate of correctness.  

• Calculation of the probability that design rules or manufacturability constraints are 
met.  

• Rapid re-verification of a system after configuration changes (e.g., due to component 
failures or adaptation), via incremental, modular verification processes.  

• Estimation of the cyber-physical system’s reliability, with minimal real-world testing. 
PRISMATIC will have enormous impact the overall cyber-physical system design process, 

by making formal verification a practical tool to use frequently, as part of the daily iterative 
design cycle. PRISMATIC can verify the link between system designs and their formalized 
requirements, and actively guide designers in modifying their systems when requirements are not 
met. Furthermore, PRISMATIC dramatically reduces the need to physically build and test 
system components to ensure proper operations. And when real-world testing of implemented 
prototypes is needed, PRISMATIC’s statistical verification methods helps minimize the testing 
required.  
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2.0 INTRODUCTION 
This report describes the results of the Phase 1 PRISMATIC effort for the META program. 

The META program is improving the design of military cyber-physical systems by developing 
new model-based design flows and tools that can capture functional and logical aspects of a 
system, allowing design-time verification of system behavioral properties. Many cyber-physical 
systems are used in military applications where mission failure or loss of life is a significant 
possibility. For example, in 1992 an F-22 jet crashed because of an error in the flight control 
software [34]; in September 1997 the USS Yorktown was left at sea with no power for several 
hours because bad sensor data was entered into an onboard computer system and handled 
improperly [38]. There faults are clearly unacceptable. Our ability to assemble and deploy 
large-scale cyber-physical systems has exceeded our ability to ensure their correctness. To avoid 
such failures, it is of paramount importance to determine that cyber-physical systems actually 
meet the goals for which they are designed. 

To address these challenges we are developing PRISMATIC, a workflow/process and tool 
for generating probabilistic “certificates of correctness” for entire large-scale cyber-physical 
systems such as ground combat vehicles or aircraft. In designing and implementing PRISMATIC 
our team has extended several of our previous ground-breaking verification methods and 
state-of-the art open-source verification tools, and developed unique new capabilities for scaling 
through compositionality to meet the challenges of cyber-physical system design and 
manufacturing flow. 

Automatic design verification techniques are intended to check that a particular system 
design meets a set of formal requirements. Verification offers the promise of dramatic reductions 
in the cost and schedule of complex system development projects, by improving several aspects 
of the design and testing process:  

• More flexible requirements allocation.  
• Early recognition of design flaws and interactions.  
• Guided design revisions.  
• Rapid re-verification after system design changes or adaptation.  
• Pre-testing assessment of system reliability, with error bounds, accounting for single- and 

multi-mode failures.  
• Reduced need for testing.  
Verification of complete cyber-physical systems poses several key DARPA-hard challenges, 

including:  

• Heterogeneous, cyber-physical domains — Tight integration of physical components 
such as vehicle control mechanisms with computing hardware and software produces 
unique verification problems that span a variety of design domains. Many 
domain-specific design and verification tools are available, but they typically do not 
allow cross-domain analysis. For verification of physical components, a typical problem 
is to ensure that a component can sustain 150% load. For military flight software, 
verification is concerned with the correctness of software according to the requirements. 
To produce a system-level certificate of correctness or safety, we must develop new 
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formal methods for combining probabilistic certificates of correctness of heterogeneous 
components and their interactions.  

• Uncertainty — Traditional complete verification methods work well for confirming 
device functional behaviors, when they apply (e.g., to structured VLSI components), but 
many cyber-physical systems necessarily include fallible system components (e.g., 
failure-prone mechanical devices) and interactions with an uncertain, imperfectly-sensed, 
and only-partially-controllable environment. These aspects necessarily introduce 
uncertainty in the verification process, requiring new verification techniques. Our team 
includes leading researchers in probabilistic verification, who have developed the current 
state-of-the-art verification algorithms and tools. 

• Large scale — Currently, the best available non-probabilistic model checking 
verification systems are easily overwhelmed by the complexity of even fairly small 
software systems. Probabilistic model checking systems have been demonstrated on 
systems with as many as 1017 possible states [21], but even this power is dwarfed by the 
potential state space size of a full cyber-physical system. New techniques must be 
developed to divide-and-conquer the overall system verification problem, so that smaller 
components and subsystems can be verified to a given level of reliability, and those 
results combined into higher-level, system-wide probabilistic certificates of correctness. In 
addition, efficiency techniques such as incremental verification and parallelization may be 
leveraged to improve the scalability of verification methods. 

 
Figure 1: Cyber-physical System Design with PRISMATIC 

The PRISMATIC tool provides rapid, incremental verification of full 
cyber-physical system designs to produce probabilistic certificates of correctness 
or counterexamples and related feedback that can be used to revise design 
elements and component libraries. 
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Figure 1 illustrates how our PRISMATIC operates within an iterative, incremental 
design-verify cycle for cyber-physical systems. PRISMATIC interfaces to design tools that 
produce multi-domain models capturing various aspects of a system design, such as its 
mechanical elements, computing hardware, and software. PRISMATIC consumes formalized 
specifications of the system requirements that it is supposed to verify (e.g., safety constraints); 
these may be captured within the design tools or in separate requirements-capture tools. Finally, 
PRISMATIC takes in models of the cyber-physical system’s expected mission and operating 
environment, including disturbance models and component failure scenarios. From these inputs 
PRISMATIC verifies individual components and subsystems, combining them using new 
compositional algorithms to verify the entire system. Or, when the verifier proves that a system 
design does not satisfy its requirements, PRISMATIC returns counterexamples to the design 
tools, helping guide debugging and design revisions. 

Our team had already developed several ground-breaking verification methods and 
implemented state-of-the art verification tools that were leveraged to build PRISMATIC. In 
particular, the Oxford team has been developing the PRISM probabilistic model checking system 
for over a decade, and its extensible architecture forms the core of PRISMATIC. We have added 
new types of built-in verification, and we have extended its interfaces so that it can coordinate 
the operations of other domain-specific verifiers and simulators. 

As a result of our work PRISMATIC can offer several important benefits, including:  

• Scalability — PRISMATIC scales to verify extremely complex systems via 
compositional verification, incremental verification, and statistical methods that scale 
well with model size.  

• Speed — PRISMATIC verifies new system designs quickly using a compositional, 
divide-and-conquer strategy. PRISMATIC takes advantage of parallel processing, since 
statistical methods are parallelizable and support concurrent verification of numerous 
system properties.  

• Rapid re-verification — Changing a cyber-physical system design may not require 
complete re-verification, because PRISMATIC’s compositional and incremental 
verification techniques minimize the need to re-verify unchanged components.  

• Design guidance — PRISMATIC helps guide debugging and system re-design efforts by 
identifying culprits and deriving requirements on future design revisions that will move a 
system closer to compliance with desired safety or behavioral specifications.  

• Generality, broad applicability — PRISMATIC’s statistical verification methods work 
for any type of system that can be simulated, using any form of probability distributions. 
Thus PRISMATIC can easily combine results from different cyber-physical design 
disciplines.  

PRISMATIC can have enormous impact on the overall cyber-physical system design 
process, by making formal verification a practical tool to use frequently, as part of the daily 
iterative design cycle. PRISMATIC can verify the link between system designs and their 
formalized requirements, and can actively guide designers in modifying their systems when 
requirements are not met. Furthermore, PRISMATIC can dramatically reduce the need to 
physically build and test system components to ensure proper operations. When real-world 
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testing of implemented prototypes is needed, PRISMATIC’s statistical verification methods can 
help minimize the testing required. 
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3.0 METHODS, ASSUMPTIONS, AND PROCEDURES 
The primary objective of the Phase 1 effort has been to develop a PRISMATIC tool that 

efficiently performs the key probabilistic verification functions on complex cyber-physical 
system designs described in the introduction. Achieving this objective first required SIFT, 
Carnegie Mellon University (CMU), and Oxford to achieve a number of research goals:  

• Unifying probabilistic and non-probabilistic verification.  
• Investigating hybrid, cross-domain verification methods.  
• Applying compositional reasoning in verification.  
• Developing incremental verification techniques.  
• Enhancing analytic verification with counterexample generation.  
• Effectively simulating rare events via importance sampling.  

We completed these implementation and research goals as proposed through the following 
specific tasks, which we describe in detail in the sections below.  

• Creating clearly written requirements, use cases, and an evolving design for the 
PRISMATIC tool (Section 3.1).  

• Implementing statistical verification algorithms for the unified PRISMATIC tool 
(Section 3.2).  

• Implementing verification methods to define and exploit system decomposition, 
allowing PRISMATIC to combine probabilistic certificates of correctness from 
components or subsystems into higher-level probabilistic verification results 
(Section 3.3).  

• Researching and implementing methods for incremental verification, allowing rapid 
analysis of models after changes (Section 3.4). 

• Implementing an approach for identifying culprits, the individual internal components 
responsible for failures (Section 3.5).  

3.1 PRISMATIC Design 
Figure 2 shows a breakdown of the PRISMATIC architecture into functional components. 

The PRISMATIC architecture leverages the components and architecture of Oxford’s PRISM 
probabilistic model checking system: PRISM’s extensible architecture forms the core of 
PRISMATIC. In the following paragraphs, we will briefly review the structure of PRISM, and 
then explain how PRISMATIC extends the core system with new capabilities.  
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Figure 2: PRISMATIC Architecture  

PRISMATIC’s compositional reasoning divides system verification problems into 
smaller verification tasks that can be addressed by analytic or statistical 
verification methods. PRISMATIC leverages and extends the existing PRISM 
tool (shaded boxes), also adding incremental verification methods for efficient 
iterative design and verification. 

3.1.1 PRISM Overview 
Oxford has been developing the open source PRISM probabilistic model checking system for 

over a decade, and it is now the leading tool for analytic/numeric probabilistic verification. 
PRISM provides support for modeling and analysis of several different classes of probabilistic 
models: discrete- and continuous-time Markov chains, Markov decision processes and 
probabilistic timed automata. It provides a flexible language for describing such models and 
supports a wide range of probabilistic temporal logics for specifying properties to be verified. 
The tool has been applied to more than fifty real-world case studies covering a broad spectrum of 
application areas: randomized distributed coordination protocols, including IEEE 1394 Firewire; 
wireless protocols, such as Bluetooth device discovery; security protocols such as for anonymity 
and quantum cryptography; and biological reaction pathways. 

PRISM is currently the leading probabilistic verification tool in terms of functionality, 
efficiency and adoption. It is used for teaching and research in more than fifty institutions 
worldwide and has been downloaded more than 23,000 times. There are over 165 external and 
125 internal PRISM publications and research projects centered around the tool have received 
funding from both UK and EU research councils (EPSRC, ERC) and industry (including 
Microsoft Research, QinetiQ, and BT). 

PRISM incorporates multiple efficient engines, primarily based on symbolic model checking 
techniques that use extensions of binary decision diagram (BDD) data structures. Current PRISM 
components are shown shaded in Figure 2: State Space Engines translate design models into 
efficient internal data structures, the State Space Models. Using these state space models, the 
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Analytic/Numeric Verifier checks the truth of claims about the system, for example integrating 
probability information over classes of safe trajectories to compute lower bounds on the 
probability of safe system function. In addition, PRISM includes a Discrete-Event Simulator, 
which can be used to generate sample executions through PRISM models, providing a basis for 
the integration of SIFT and CMU’s statistical model checking techniques (Section 3.1.2, below). 

PRISM’s modular, open architecture is a good foundation for PRISMATIC: it already has a 
proven track record of being successfully extended to implement novel verification techniques 
by both the PRISM team and by external research groups. For example: recent work on 
compositional probabilistic verification by Prof. Kwiatkowska’s team [11, 22] was developed as 
an extension of PRISM; researchers at the University of Konstanz have developed 
heuristics-based search techniques [3] on top of PRISM’s discrete event simulation engine; and 
researchers at Saarland University, Saarbrücken extended PRISM with techniques to analyze 
infinite-state Markov chains [18]. The scope and applicability of PRISM have also been 
extended through various connections to external tools and design languages. For example, 
through language-level translations to its modeling language, PRISM offers indirect support for 
SBML (Systems Biology Markup Language) and probabilistic extensions of various process 
algebras (π-calculus, PEPA, CSP). Conversely, the PRISM language is used as input to several 
external tools, such as the statistical probabilistic model checkers YMER and APMC, and 
research prototypes for abstraction (PASS, INFAMY) and parametric verification (PARAM). 
PRISM also interfaces with other model checkers, such as ETMCC and MRMC, and numerical 
software such as MATLAB. 
3.1.2 From PRISM to PRISMATIC 

The PRISMATIC components that we developed in META are shown unshaded in Figure 2. 
The front end for PRISMATIC is the Compositional Verification Engine, which consumes 
incoming design models, and manages the verification flow. This component manages the 
assume-guarantee reasoning needed to divide-and-conquer large-scale verification problems. 
The assume-guarantee approach requires deriving guarantees about some subsystem’s function 
and using those guarantees as “assumptions” later to derive further guarantees of sibling or 
parent components. Thus a key question is what assumptions and subsystem partitions should be 
our focus. The compositional verification engine captures decomposition information inherent in 
the cyber-physical system designs, and also incorporates novel adaptive decomposition 
techniques to automatically find the decompositions that are most productive of design and 
verification savings. Designers may also use the assume-guarantee functions “in reverse” to 
derive the performance bounds on a component that are required to guarantee a performance 
bound on the overall system. That is, showing that if the overall system must exhibit some 
desired property P, then a particular subsystem must provide a property P' with at least some 
probability. 

PRISMATIC also integrates analytic/numeric and newer statistical methods for verifying 
probabilistic systems, adding the Statistical Verifier component shown in Figure 2. To date, 
PRISM uses symbolic and numeric reasoning over system specifications to deduce whether or 
not properties will be satisfied. In contrast, work by CMU and SIFT has focused on verifying 
properties by statistical model checking based on simulation of a system design. We contrast 
these two techniques below in Section 4.2. 
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We have also added interfaces from PRISMATIC to alternative, domain-specific verifiers so 
that their results can be incorporated into the overall verification results. The compositional 
verification engine merges assume-guarantee results into unified proofs stored in the 
Assume-Guarantee Proof database.  

In a sense, the counterexample extractor component performs a task opposite to that of 
assume-guarantee reasoning. Assume-guarantee reasoning allows us to use the verification of 
individual subsystem properties as building blocks to verify overall system properties. The 
counterexample extractor guides designers’ progress when PRISMATIC fails to verify a 
property (or fails to verify it to a desired degree of probability). In conventional 
(non-probabilistic) verification systems, counterexample extraction is simply a matter of finding 
a single trace that violates a claim. However, in probabilistic systems it is not sufficient, in 
general, to find a single counterexample to violate a property. Instead, we must find a class of 
counterexamples with some amount of probability mass sufficient to violate the likelihood 
threshold in the claim. We discuss how to find and exploit such classes of counterexamples in 
Section 4.5. 

To support the suite of components in the verification flow, PRISMATIC includes a database 
of Simulation and test traces and an incremental verification cache. The trace database is 
harvested by the counterexample extractor after a failed verification, to guide PRISMATIC users 
in redesign. SIFT’s incremental verification techniques use the verification cache (see Section 
4.4) to speed subsequent verifications, as does compositional reasoning. 

3.2 Statistical Verification 
Previous verification techniques can be divided into two basic classes: probabilistic and 

non-probabilistic approaches. Non-probabilistic verification works on system models that have 
no uncertainty, and is used to formally prove operating properties based on those models. Team 
member Prof. Edmund Clarke of CMU pioneered formal verification through model checking, a 
technique that has led to revolutionary advances in VLSI circuit design complexity, allowing 
system designs with millions of transistors to be automatically checked for proper performance. 
Prof. Clarke shared the 2007 Turing Award for developing this technology. However, when 
applied to the more complex domain of software verification, pure model checking methods have 
stumbled—they do not scale as well on the less-structured designs that arise in software systems. 

Furthermore, in many real-world system designs, there is some non-zero probability of 
failure or requirements violation. Such stochastic behavior arises naturally, for example because 
of uncertainties present in a system’s components or its environment (e.g., the reliability of 
communication links in a wireless sensor network, the rate of message arrivals on an aircraft’s 
communication bus). In these domains, the goal of verification is to check that the actual 
probability of a failure occurring, while non-zero, is acceptably small. For example, we want to 
know whether the probability of a communication bus delaying a message is smaller than 
0.00001; or whether the system fulfills a request within one millisecond with probability at least 
0.9999. 

The purely logical proofs used in traditional model-checking cannot apply to such systems; 
instead, probabilistic model checking (PMC) methods are required. These require the 
construction of a stochastic model of the system to be verified and the specification of its 
requirements in probabilistic temporal logic [4, 5, 16]. The problem is then to decide whether the 
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model satisfies a temporal logic property with a probability greater than or equal to a certain 
threshold. More formally, suppose M is a stochastic model over a set of states S, s0 is a starting 
state, φ is a formula in temporal logic, and θ∈(0,1) is a probability threshold. The PMC problem 
is to decide algorithmically whether model M satisfies property φ with probability at least θ; in 
symbols,  
M, s0 |= P≥θ(φ). 

Early work on probabilistic model checking focused on extending traditional analytic model 
checking techniques with numeric methods to determine the probability that a property is 
satisfied. In addition to exhaustive exploration and construction of a stochastic model, 
probabilistic model checking requires the numerical solution of, for example, linear equation 
systems or linear optimization problems. Considerable progress has been made in developing 
efficient implementations of these techniques, resulting in powerful probabilistic model checking 
tools, such as PRISM [19]. However, numerical solution remains computationally demanding, 
and as with all analytic model-checking methods, the approach scales poorly as the system’s 
reachable state space grows large (e.g., above 107 – 108 states). In many real-world systems, the 
number of states can easily exceed this limit. This necessitates the development of alternative, 
more scalable methods. 
3.2.1 Statistical Probabilistic Verification 

One promising approach to probabilistic model checking, which Dr. David J. Musliner 
(SIFT) and Prof. Clarke have been investigating, is statistical model checking [14, 40, 41, 36]. 
This technique operates quite differently from analytic/numeric approaches, providing many of 
the same advantages with far better scalability. Rather than numerically propagating uncertainty 
through a detailed system model, statistical model checking algorithms simply draw sample 
traces of the system’s execution (e.g., from a simulation or test rig) and use statistical methods to 
test whether the accumulated samples justify a sufficiently-confident conclusion about whether 
the system’s performance meets the requirements. If a conclusion is not yet possible, more 
samples are drawn. This approach is less sensitive to the state explosion problem that causes 
difficulties for exhaustive model checking algorithms. 

These techniques rely heavily on simulation, which is generally easier and faster than a full 
symbolic study of the system. This may be an important factor for industrial and defense 
cyber-physical systems, which are often designed using efficient simulation tools like MATLAB 
SIMULINK™ [1]. Since all we need are simulations of the system, we do not have to translate 
system models into a separate modeling language for a verifier, nor do we have to build 
symbolic models of the system (e.g., Markov chains) suitable for numerical methods. 
Eliminating these intermediate representations not only speeds up the verification process, it 
eliminates another source of potential error: there is no separate verification model that can 
become inconsistent with the system model. 

Statistical model checking treats the probabilistic model checking problem as a statistical 
inference problem, and solves it by randomized sampling of the traces (or simulations) from the 
model. The traces are model checked to determine whether the desired property holds, and the 
number of satisfying traces is used to decide (approximately) whether M, s0 |= P≥θ(φ). The 
decision is made by means of either estimation or hypothesis testing. In the first case one seeks to 
estimate probabilistically (e.g., compute with high probability a value close to) the probability 
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that the property holds and then compare that estimate to θ [17, 36] (in statistics, such estimates 
are known as confidence intervals). In the second case, the probabilistic verification problem is 
directly treated as a hypothesis testing problem, that is, deciding between two alternate 
hypotheses—P≥θ(φ) versus P<θ(φ) [40, 41, 42]. Hypothesis-testing-based methods are more 
efficient than those based on estimation when the probability threshold θ (which is specified by 
the user) is significantly different from the true probability that the property holds (which is 
determined by M, s0, and φ) [39]. On the other hand, it might be necessary to give an accurate 
approximation of the unknown probability that the property holds, and that is just what 
estimation methods aim to do.  

Our statistical model checking approach for both hypothesis testing and estimation is based 
on Bayes’ theorem and sequential sampling. Bayes’ theorem enables us to incorporate prior 
information about the model being verified, where available. Sequential sampling means that the 
number of sampled traces is not fixed a priori, but it is instead determined dynamically at 
“run-time,” depending on the evidence gathered by the samples seen so far. This often leads to 
significantly smaller number of sampled traces (simulations). The number of samples in the 
sequential sampling scheme can be three orders of magnitude smaller than fixed sampling 
schemes. Our proposed estimation method follows directly from our Bayesian approach. In fact, 
Bayes’ theorem enables us to obtain the posterior distribution of the true probability p with 
which the model satisfies the formula (i.e., the distribution of p according to the data sampled 
and chosen prior). By integrating the posterior over a suitably chosen interval, we can compute a 
Bayes interval estimate with any given confidence coefficient. 

Statistical verification methods have proven to scale very well as the size of the system 
model and reachable state space grows. For example, Figure 3 (from [39]) shows two graphs that 
compare the performance of analytic/numerical and statistical model-checking methods. As 
shown, the numerical methods scale poorly, with verification time growing exponentially as the 
state space grows. In contrast, the statistical approach can scale almost independently of system 
size; roughly speaking, statistical methods take longer as the difficulty of the question being 
answered grows. Specifically, when the actual probability that the system design satisfies or 
violates the desired property φ is close to the verification threshold θ, statistical methods have 
more trouble reaching a conclusion, and require more samples. 

 
Figure 3: Verification Time Comparison for Analytic/Numerical and Statistical Model 
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Checking Methods  
In addition, because statistical methods do not need to represent the entire system state space, 

nor must they retain the execution traces they assess, their memory usage can be very low 
(near-constant). In contrast, numerical methods need exponentially increasing memory, and often 
fail by running out of memory before they exceed the allotted verification time. 

We have developed statistical model checking techniques and applied our Bayesian 
hypothesis testing approach to very large (1017 states) stochastic systems, where it has 
outperformed other statistical techniques by an order of magnitude [21]. We have also had initial 
success with both our Bayesian hypothesis testing and estimation methods on examples of 
discrete-time, stochastic cyber-physical system coded as Simulink/Stateflow diagrams, and we 
are observing similar speed-ups [44].  

For even greater speed and scalability improvements, statistical methods may be deployed on 
parallel processors. Statistical model checking methods are easier to parallelize than exhaustive 
verification techniques, because each sample trace can be generated independently. In fact, 
Younes’ open-source YMER [39] tool already includes support for distributed acceptance 
sampling; tests show a performance improvement close to linear in the number of CPUs made 
available to YMER. We plan to investigate parallelization and distribution of Statistical Model 
Checking directly for the problem domain of Simulink/Stateflow models. 

Statistical methods can make use of additional memory to store partial or complete traces and 
use them to provide additional benefits, including design revision guidance/advice and more 
rapid verification of revised designs. For example, a statistical verification system may preserve 
those traces that lead to failures of various kinds and analyze them to let a designer know which 
system components are most responsible for an unacceptable failure rate. Or, all of the traces 
may be preserved (subject to some arbitrary memory limits) and the verification engine can 
re-use those traces or trace prefixes that are not affected by a design component that has been 
changed. 

Statistical model checking is not limited to pure offline simulation. It is applicable to 
hardware-in-the-loop simulations and live testbeds, and might even help by increasing 
confidence in system designs during the initial system operation phase by combining runtime 
verification with Statistical Model Checking techniques. 

However, one problem with statistical model checking is caused by rare events, i.e. 
properties whose probability of being true is small enough relative to the number of samples that 
can be generated or evaluated that we are unlikely to be able to observe enough examples (or 
even one example) of the rare event to make a reliable estimate of its probability. It is well 
known that straight Monte Carlo techniques such as statistical model checking do not perform 
well when estimating rare-event probabilities. The problem is that the sample size (i.e. the 
number of simulations) required for accurate estimates grows too large as the event probability 
tends to zero. However, several techniques have been developed to address this problem. 

We have been studying importance sampling techniques, which bias the original system to 
increase the likelihood of the event of interest, and then weight the simulation results in order to 
obtain unbiased estimates. The main difficulty in importance sampling is to devise a good 
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biasing density, that is, a density yielding a low-variance estimator. Optimal, zero-variance 
biasing densities do exist, but are extremely difficult to sample from.  

We have been investigating two techniques for variance reduction with importance sampling. 
Both techniques search for a biasing density in a parameterized family of densities which include 
the original density of the system. The first technique is the cross-entropy method, which 
searches in the parameterized family of densities for a biasing density “close” to the optimal one. 
A practical notion of “closeness” between two densities is provided by the cross-entropy (or 
Kullback-Leibler divergence). The second technique seeks to (numerically) find the density 
which actually minimizes the variance of the importance sampling estimator. 

We have used the cross-entropy method [8] and variance minimization [43] for generating 
optimal biasing densities in statistical model checking. In particular, we have applied both 
techniques with importance sampling for verifying Stateflow/Simulink models of a fault-tolerant 
fuel control system and of a fault-tolerant controller for an aircraft elevator system. Our results 
suggest that importance sampling and can be successfully combined for statistical model 
checking of rare events in moderately large, though realistic, cyber-physical systems. 
3.3 Compositional Verification 

Although statistical verification methods can scale to very large state spaces, there are still 
significant challenges in applying them to real-world cyber physical systems. Capturing the 
interactions of hundreds of components is beyond the state of the art for a single verification 
operation. However, Oxford’s recent research in probabilistic “assume-guarantee” verification 
shows promise for truly compositional verification—that is, a means by which separate 
verification results for components can be combined to give a system-level verification 
result [22]. Using assume-guarantee methods, we verify a set of requirements on one component 
and then show that, if those results hold (the assumption), then a second component operating in 
the environment of the first will meet a desired overall performance guarantee. For example, if 
we assume that component X fails with a probability no higher than p, then we can guarantee that 
the system as a whole will only deadlock and fail with a probability ≤ p/2. The assumption 
allows us to partition the overall system verification problem into two smaller problems, 
reducing the computational burden. 

However, deciding what assumptions should be used to partition the system is currently an 
art. In the year prior to META, Oxford had made progress on using algorithmic learning 
techniques, already shown to be successful in non-probabilistic compositional verification [6, 
26], to automatically generate such assumptions [11]. Our research has extended and 
implemented this approach in PRISMATIC. Previously, assume-guarantee reasoning using 
PRISM was a manual operation in which the user of the tool is required to (1) select the 
appropriate abstraction points, (2) break the problem into multiple models, and (3) perform the 
separate proof steps of assume-guarantee reasoning in a non-automatic manner. The Oxford 
Group has now completed the additional input language syntax and mechanisms within 
PRISMATIC to automatically perform assume-guarantee reasoning (Step 3 above). 
Automatically deriving assume-guarantee partitions would thus combine results from both 
PRISMATIC’s own analytic and statistical verification engines as well as external verifiers (e.g., 
NESSUS [2]).  
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Another key challenge in making this technique practical was using the system design model 
to understand which behaviors and failure modes are independent across decomposition, and 
which are dependent or related. For example, two subsystems that are attached to the same 
power bus may have independent failure characteristics related to their internal components or 
software, and dependent failure rates related to transients on the shared power bus. Probabilistic 
certificates for these subsystems must carry along the assumption information that describes the 
environmental assumptions in which the guarantees hold true, so that the overall composite 
system can be reasoned about correctly. 

3.3.1 Assume-Guarantee Reasoning with Statistical Verification 
The assume-guarantee reasoning approach, as currently implemented in PRISM, is limited to 

analytic propagation of probabilities. Models which are too large for the analytic approach may 
be amenable to statistical sampling approaches for inferring probabilities. However, there is a 
theoretical disconnect between the assume-guarantee reasoning and probability inferencing via 
statistical sampling. For example, consider the asymmetric proof rule: 

  (1) 

Existing sampling approaches such as simple packet relay transport (SPRT) can be used to 
determine whether the assumption, 〈T〉 M1〈A〉≥pA, is satisfied. One challenge lies in generating 
samples that agree with the assumed property while providing a sufficient distribution to prove 
the guaranteed property. A statistical solution would sample some instances where 〈A〉 is 
satisfied, and some where it is not. Sample selection could be used to achieve the right balance of 
〈A〉 vs. 〈Ā〉 samples. A further issue is nondeterminism, which arises in the assume-guarantee 
reasoning formulation due to the composition operator. A nondeterministic scheduler is assumed 
to resolve races between concurrent action choices. Existing non-statistical solution methods use 
linear programming to optimize an adversary that acts in worst-case manner to defeat the 
property being verified. Finally, the assume-guarantee rule is incomplete, in the sense that 
although the system might satisfy the property, one will still not be able to not come up with an 
appropriate assumption (written as a probabilistic safety property) that makes both premises 
satisfiable. 

The CMU team has experimented with (strong) probabilistic simulation [35] and proposed 
the following assume-guarantee rule for checking probabilistic simulation.  Here M1, M2 and A 
are (labeled) probabilistic automata, and || denotes the parallel composition operator: 

  (2) 
The rule is both sound and complete; completeness follows simply from the fact that one can 

replace A with M2 in the rule premises. Note however that for the rule to be useful in practice, 
assumption A needs to be much smaller than than M2 but still reflect M2's behaviour in such a 
way that the Premise 2 is satisfied. Coming up with such assumptions manually is a highly 
non-trivial exercise. Following seminal work by Pasareanu et al. [12, 26] that was done in the 
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context of non-probabilistic verification, we have defined two new algorithms for building 
assumptions automatically for the compositional probabilistic verification using the rule above. 
In particular, this approach incorporates: 

• A new definition of (sub) stochastic tree counterexamples for the simulation conformance 
checks. Previous work on simulation checking did not define counterexamples, although 
they are essential for model checking and debugging systems. We use counterexamples 
to automatically infer and refine assumptions used in compositional verification. 

• Assume-Guarantee Abstraction Refinement (AGAR) for simulation conformance. The 
initial assumption is built as a conservative abstraction of M2 (hence Premise 2 holds by 
construction). This abstraction is then iteratively refined based on counterexamples 
obtained by model checking Premise 1 iteratively. The process is repeated until either the 
conformance relation is shown to hold or a discrepancy between the system and the 
specification is found.   

• A new approach for learning the minimal separating automaton for languages of 
stochastic trees. We have developed two variants: (i) learning minimum consistent 
partition and (ii) learning minimum state separating automata. 

We have implemented the algorithms for simulation checking and generation of tree 
counterexamples, and subsequently refined the former based on the Yices SMT solver. We have 
also implemented the AGAR compositional algorithm, and began implementing the learning 
algorithms. We have applied these algorithms to the verification of the ramp subsystem. In order 
to apply our techniques, we had to change the communication from formula-based to proper 
synchronization, based on common actions. Such transformation would be needed for any 
compositional or hierarchical reasoning. We did a systematic, albeit manual, translation. We 
identified inputs coming from the other components and corresponding outputs. We created a 
communication action for each condition on these inputs (module ElectricalActuatorEA1) and we 
added transitions for the corresponding outputs according to the formulas. This implementation 
is able to verify system-level properties of the Ramp system in reduced time, and in greatly 
reduced space, than in previous simulation checking. 
3.3.2 Abstraction Verification 

Compositional verification depends on the assumption that system-level verification 
produces the same results when using the abstract components representing assume-guarantee 
partitions as it would if the verification could be performed using an expanded model 
incorporating all of the component-level detail. However, in order to be able to be able to realize 
the benefits of compositional verification (verification of larger models, reduced duplication of 
verification effort), there must exist a way to verify that a given abstraction accurately represents 
the relevant properties of the underlying component without needing to perform the entire 
system-level verification using both representations of the component. This requirement is 
especially necessary if we wish to enable system modelers to use third-party libraries of system 
component models without needing to perform expensive system-level verification to verify each 
component abstraction.   

PRISMATIC uses component mode information (nominal and failure modes) defined in the 
detailed component model to perform this verification. When verifying that a given model is a 
valid abstraction of a specified detailed model, PRISMATIC checks the specified models for 
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inputs or outputs that are unconnected (to other subcomponents of the component) and uses the 
values of those flows to analytically verify that the behavior of the abstract and detailed models 
match exactly in each component mode. In order to pass verification, an abstraction must always 
produce the same output as the detailed component model for the same input values in all modes, 
and it must enter each off-nominal mode with at least the same probability as the detailed model.  
An abstraction that enters off-nominal states with a greater probability than a detailed model is 
accepted, since properties depending on the correct functioning of the component that are 
verified against a system using the abstract model will also hold for the potentially more reliable 
detailed model. 

The PRISMATIC abstraction verification tool (ABV) creates a series of tests by setting the 
abstraction next to the detailed input model to evaluate that they, indeed, have the same behavior. 
The ABV tool will create default formulae for comparing the modes of the abstract and detailed 
models. Should these defaults not capture the appropriate composition of detailed modes ABV 
also supports explicitly setting “mode combinations” using either conjunctive or, in the case of a 
redundant system, disjunctive mode operators. In especially complex systems the actual 
expression to verify that both the abstract and detailed modes are in equivalent modes can be 
given explicitly as an expression. 

In designing a realistically complex system one can leverage abstraction verification to 
perform modular decomposition of the system design. The PRISMATIC toolset includes the 
parallel abstract verifier (PABV) which has been designed to handle immense workloads. Given 
a list of available PRISMATIC web service instances PABV manages to keep the job queue of 
each web service full with at most two tasks in order to avoid overwhelming network and 
operating system resource limits. PABV will submit a ABV task for each compositional 
verification job submitted in parallel, gather the result values (including performance metrics) 
and return the rolled up system verification result. In this way proper assessments of the 
probabilistic behavior of the entire system can be performed by composing verified subsystems 
where each subsystem is an abstraction for the detailed components it comprises. This is 
essential as probabalistic model checking for a full system design is infeasible due to the 
combinatorial amount of computer memory required to represent the state space with enough 
multi-terminal binary decision diagrams (MTBDDs). 

3.3.3 The PRISM Daemon 
For simple models PRISM runtime is dominated by Java Virtual Machine initialization. For 

running multiple model checking tasks in compositional verification, PRISM must be restarted 
multiple times. Moreover, invoking multiple classic PRISM processes on a grid of computing 
nodes would require marshaling arguments and remote copying of input files and output results 
(i.e. ssh and scp). Given the need to scale PRISMATIC to realistically complex systems we 
enhanced PRISM to act as a web service via a PRISM daemon. 

The basic design of the PRISMATIC web service is the addition of an embedded web server 
to PRISM. The PRISMATIC web service can be configured to run on any port using the 
standard HTTP protocol. In this way multiple instances of the PRISMATIC web service can 
respond to different requests when configured to listen on different ports. As the PRISMATIC 
web service acts as a web server it is possible to open its URL in a browser (e.g. 
http://localhost:8080). In this case PRISMATIC displays a form where users can enter 
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command line arguments from a list of predefined switches, free format strings or upload input 
files. When the user has submitted the form the PRISMATIC output is returned to the browser. 

However a more common way to invoke the PRISMATIC web service is from a command 
line client which marshals arguments and submits input files using multipart encoded forms 
(using the RFC2388 standard, https://www.ietf.org/rfc/rfc2388.txt). The PRISM output 
is returned as the standard output of the client and so invoking PRISM in this way is nearly a 
drop-in replacement for classic PRISM, with the exception that redirecting output to multiple, 
different files is not permitted. 

The benefit of this approach is that the input and output file copying is eliminated, along with 
the corresponding connection setup and tear down times, as well as the JVM startup time. Even 
working at a single workstation using the PRISMATIC web service provides a considerable 
speed increase. In the case of submitting multiple requests to farm of PRISMATIC agents the 
web service becomes invaluable because it allows the designer to scale each web service server 
vertically (on large CPU and RAM machines) or horizontally, and separately the flexibility to 
host one or multiple web service instances per node. 

Our PRISMATIC toolset (notably ABV and PABV) is clever enough to recognize if a 
PRISMATIC web service URL has been defined and, if so, submit verification tasks directly to 
the web service. 

3.4 Incremental Verification 
Incremental verification is an important practical capability for real-world use of the 

PRISMATIC verification tool. Real-world designs start out imperfect and go through many 
iterations of a design-verify-revise process. The naive approach is to re-verify the whole system 
design whenever a bug is fixed or any design decisions have changed. This process is only 
feasible for small systems, and entirely impractical for the large system-scale verification 
problems targeted by META. 

We have studied techniques for incremental verification that can verify a system property, 
incorporate a change to part of the system, and then only re-verify as much as needed to ensure 
that the change of the system does not violate the property. One basis for our work has been the 
incremental verification techniques that our team developed and patented [24] for 
nonprobabilistic model checking [25]. By preserving verification information during system 
design revisions, those methods achieved performance improvements exceeding two orders of 
magnitude when incorporated into the CIRCA system’s automated design-verify-revise process 
for designing real-time reactive controllers. 

In other previous work [7, 37], our team has considered the “component substitutability 
problem” in the context of evolving software systems. That work focused on being able to 
replace a modular software system’s components and then only locally verify the new 
component’s behavior, using assume-guarantee reasoning to restore confidence in the whole new 
system. As part of this project, we studied incremental verification and components for the 
problem domain of cyber-physical systems instead of pure software systems. The new challenges 
we faced were related to the physical and continuous aspects of cyber-physical systems. In 
preparation for this, we had already developed compositional verification techniques for hybrid 
systems [27, 28] and corresponding automatic fixed-point procedures [30, 31]. Recently, we had 
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also developed a verification approach for reconfigurable distributed hybrid systems [29] to help 
us understand the basis for evolving cyber-physical systems.  

Based on these prior developments, we have investigated techniques to decrease the 
computational cost of iterations in the design and verification flow. The Oxford and SIFT teams 
implemented incremental verification within PRISMATIC, which reduces the time for 
re-verification of models when only small, parametric changes to the model are made. 

When a design fails initial verification, we expect the designer to make changes and try 
again. In addition, a designer may want to systematically assess the effects of changes in design 
parameters. For example, how does overall system reliability change given a range of failure 
probabilities for one component? However, the computation required can be expensive because 
model generation and verification have to be performed multiple times. Incremental verification 
offers improvements in efficiency as it reuses (partial) results from previous verification runs by 
decomposing the model into strongly connected component groups and retaining calculations for 
unaffected component groups. Furthermore, the same technique can be used to perform 
sensitivity analysis, varying some of the numerical inputs over a small range of values, allowing 
the developer to reason about estimated parameters such as probabilities or component failure 
rates. 

We extended the PRISM implementation in a number of ways to allow partial recomputation 
of the models. As mentioned above the first step decomposes the model into strongly connected 
components. The worst case for tree decomposition is that there will be no decomposition, and 
hence no savings. Early experience with tree decomposition techniques using randomly 
generated models produced poor results, but real-world models tend to decompose very well: a 
sensible model is not randomly generated, but is designed. Experience has shown that real 
systems decompose extraordinarily well [33, 9]. 

Given a good tree decomposition and a set of changed variables it is necessary to recompute 
the model so as to reflect the changes. We modified the treatment of MDP models to support 
incremental recomputation of the models. Originally, compiled PRISM MDP models contained 
numbers without any record of what variables were involved in their computation. We extended 
the MDP model to retain the symbolic expressions representing the transition probabilities so 
that when a variable is changed the probabilities that need to be recomputed can be recomputed 
from their expressions. The combination of model decomposition and expression directed model 
recomputation resulted in significant speedups. While the speedups depend upon the success of 
the model decomposition algorithm there is good reason to believe that real models (not 
synthetic) will yield good decompositions that result in dramatic speedups in model 
recomputation following variable changes. 

In summary, for a design tool to be useful, it must be possible for the design engineers to 
make iterative changes to the model until a model is arrived at that meets design requirements.  
After each change the models must be updated. For small models this is not a problem but for 
large models the cost of recompiling the models can be prohibitive yielding a design tool that is 
too slow to support model debugging by the design engineers. Incremental verification allows 
small changes to complex models to result in recomputation cost that is proportional to the size 
of the change, rather than proportional to the size of the model. Our update to the PRISM MDP 
models has shown that this principle works well when a good model decomposition is 
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obtainable; furthermore there is evidence to support the belief that good decompositions will 
usually be available for real world models. 

3.5 Counterexample Generation and Culprit Identification 
When verification fails because a particular system design does not satisfy the specified 

requirements, a verification tool should identify one or more potential culprits, or components 
that lead to the requirements violations [13]. Exact model checking systems search for system 
execution traces that violate the requirements, and return such a trace as a “counterexample.” 
Any of the design components involved in such a counterexample trace may be the source of the 
requirements violation. 

However, as noted earlier, the standard notion of counterexample does not carry over to 
probabilistic properties. Unlike in classical model checking, a single execution trace leading to a 
bad state is often not, by itself, a counterexample to the probabilistic property. Counterexamples 
to probabilistic properties depend on how likely it is that the system produces 
requirements-violating execution traces. Thus specific culprit design components may be more 
difficult to identify. 

For example, a system of three parallel components may produce failures in each of those 
components, each leading to an unacceptable state. If the individual probabilities of those three 
types of failures are separately below the desired verification threshold, but together lead to an 
unacceptable probability of failure, then the probabilistic verification will fail. However, no 
individual failure trace explains the problem or is alone a counterexample to the probabilistic 
safety requirement. The responsibility for the system-level failure is distributed among the three 
parallel components.  

Recently, several notions of probabilistic counterexamples have been put forward [15, 3]. 
Essentially, these propose to identify sets of failure traces whose combined probability is 
sufficient to illustrate the violation of a property to be verified. These sets of paths can be 
generated either using analytic or simulation-based techniques. One of our key PRISMATIC 
research goals has been to find appropriate ways to capture this type of useful feedback to 
designers and to devise methods to generate it in an efficient manner. We can then adapt 
standard machine learning techniques to identify the culprits causing failures. Culprit 
identification thus consists of four distinct steps: 

1. Example and counterexample generation. 
2. Summary data extraction. 
3. Data analysis. 
4. Presentation of culprits.  

We have implemented a number of experimental approaches to these steps, which we detail 
below. 

3.5.1 Example and Counterexample Generation 
PRISM provides both analytical tools reasoning on the structure of a model, and Monte 

Carlo-based simulators. We have applied both techniques, in some cases developed specifically 
for PRISMATIC, to generate details of counterexample traces. PRISM’s -sim mode was 
originally oriented to experimental verification of system properties. We extended this mode to 
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export its path information for both example and counterexample generation. To allow 
experiments to be repeated as unit tests, PRISM allows its random seed to be explicitly specified.  
PRISM also allows the number of generated paths to be given explicitly or for SPRT mode to 
automatically determine the minimum number of trials required to prove or disprove a property. 
Similarly we can specify the maximum length, in the sense of the elapsed time of the simulation, 
of path to be generated; most of the properties we have tested under our META work have 
involved time-limited properties, in which case we omit this argument, which becomes optional. 
As part of the PRISMATIC effort, we have developed the -simpathv mode for PRISM 
simulation to generate path information with low overhead. 

For analytic generation of counterexample paths, PRISMATIC uses the techniques put 
forward in [15]. In order to generate the counterexamples that are most useful for designers, this 
approach aims to construct a small set of paths by identifying them in descending order of 
probability, i.e. paths corresponding to the most likely failures are extracted first.  
Algorithmically, this task is reduced to solving the k-shortest paths problem. PRISMATIC 
implements the REA algorithm of Jiménez and Marzal [20]. 

3.5.2 Summary Data Extraction 
The second step involves preparing a subset or summary of the data in the sample paths. The 

raw path data itself typically involves too many data to be feasibly examined for culprits, so it is 
necessary to shrink the data set. We rely here on a property of the models we have considered for 
META: once the mode variable associated with a component transitions from its normal or 
nominal value to some abnormal off-nominal value, we know that that mode variable will never 
change value again. In essence, the abnormal value represents a fatal state for that component. 
Relying on this assumption allows us to consider only the final value of a variable, and so have 
only one value per variable per run. We can moreover drop any variables whose value is constant 
— whether nominal or off-nominal — across all runs. Of course, this extraction process is 
straightforward to extend to any event that is a summary of a single state variable.  Expressions 
describing events that depend on multiple state variables can be specified as an input to 
-simpathv (or added to the model) to include them in PRISM's path output as a single state 
variable. 

We have two implementations of extracting summary data from a set of paths. Both of these 
implementations use the output of a PRISM run, both generate data in the attribute-relation file 
format (ARFF). 

• The first technique summarizes the value of key path elements as a multivalued nominal 
variable. Each feature in the path summary contains the final value of one component 
failure indicator. No indication of the semantic interpretation of the value is included in 
the data (aside from meaningful names for human viewing).  That is, we happened to 
know that, in our test data, certain values indicated failures (abnormal states) of 
components while other values indicated normal status of those same components, but 
this information about the meanings of the indicator values is not used in the 
identification of culprits, and no such knowledge is necessary to use the culprit 
identification process. 

• The second technique summarizes the value of key path elements as a number of 
asymmetric binary variables. A separate variable in the summary corresponds to each 
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abnormal value of the key element in the path runs. The underlying assumptions for this 
technique, and the default key elements, are the same as in the multivalued nominal 
implementation. 

3.5.3 Analysis and Presentation 

Currently we have one implemented data analysis, using Waffles to construct a modified 
decision tree based on the ARFF files. In this analysis, it is assumed that paths that violate the 
path property indicate the outcomes (e.g., system failures) for which we wish to attribute blame 
(or credit). The decision tree is built using splits based on information gain, but terminates the 
splitting process early if the paths in a branch have a sufficient proportion of failures (i.e., paths 
that violate the path property). Pruning is performed on the tree during construction to eliminate 
splits if all of the leaf nodes on the resulting branches are assigned the same label. Both the early 
termination logic and the pruning are important for producing trees from which meaningful 
culprits can be extracted: without them, the structure of the decision tree tends to obscure the true 
culprits. There are two parameters associated with Waffles decision tree construction:  

• The threshold number of samples below which no further partition of the data will be 
attempted, corresponding to the -leafthresh argument to Waffles.  

• The maximum depth of the decision tree, corresponding to the -maxlevels argument to 
Waffles. By default we use 0, indicating no maximum.  

This implementation works with either of the ARFF generators, although our limited testing 
to this point suggests that the multivalued-nominal implementation produces superior results. 
This implementation works with either of the ARFF generators, although our limited testing to 
this point suggests that the multivalued-nominal implementation produces superior results. 

The resulting decision tree is not used for classification; instead the information in the 
structure of the tree is interpreted to ascribe blame to individual components of the system for 
sets of the instances of failures in the training data. Blame for the failures in each leaf node is 
ascribed to the last feature used to split the data above that leaf node. The resulting accounting of 
blame is then presented as a ranked list of suspected features (component failures, in our tests) 
with the number and relative proportion of failures ascribed to each one. In general, the top 
culprit is the state variable that is most culpable. 

A limitation of this approach is that it assumes that blame can beattributed to individual 
features.  In the event that the property being verified is violated only when multiple events 
occur (such as the failure of redundant components), the blame for the failure will be assigned to 
just one of the relevant features. For failure involving symmetric components (e.g., redundant 
power supplies), the truth (that each of the symmetric components has the same culpability) may 
be obvious, but in other scenarios it may not be as clear that the top culprit is not solely 
responsible.  However, even in this case the top culprit is likely to be an essential part of the 
cause. For example, in the case where system failures are caused by the failure of a set of 
redundant components and just one of them shows up as a culprit, making the identified culprit 
more reliable will reduce the rate of the system failures as expected, even though there are other 
ways of addressing the same failures.  

We also use Waffles to render the full decision tree as whitespace-formatted monospaced 
text.  This format contains the full information of the tree without interpretation; this may be 
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useful in understanding the list of culprits in some circumstances, but the tree can be very 
complex and difficult to interpret for systems of even moderate size. We recommend using the 
summary list of culprits to identify why a particular system property is not satisfied, and 
referring to the raw tree only when much more detailed information is required. An example of 
when the full tree might be useful is when it is suspected that a particular culprit is not solely 
responsible for the system failures ascribed to it. For example, in the case of a system failure 
caused by failure of a pair of redundant power supplies, inspection of the entire tree would reveal 
that both of the power supplies had to fail, and not just the single source identified as the culprit. 
  



 

24 
Distribution statement A. Approved for public release. Distribution statement A. Approved for public release. 
Data subject to restrictions on cover and notice page. 

4.0 RESULTS AND DISCUSSION 
4.1 Overview of PRISMATIC Usage 

An essential preliminary for incorporating PRISMATIC into the cyber-physical system 
design process is to compose a functional model of the candidate system. This model is 
composed of the functional models of the system’s components, connected following the 
topology prescribed in the candidate design. The connecting topology is extracted automatically 
from the concept description graph, represented in a GXML file, by the XMC tool. XMC 
generates a PRISM model file, and also generates a file of the target properties of the system in 
PRISM’s PCTL format. 

Next, PRISMATIC performs probabilistic model checking of the generated PRISM models. 
PRISMATIC supports a wide range of probabilistic models including discrete-time and 
continuous-time Markov chains, Markov decision processes, probabilistic automata, probabilistic 
timed automata, plus extensions of these models with costs and rewards. Models are described 
using a simple, state-based language. PRISMATIC provides support for automated analysis of a 
wide range of quantitative properties of these models, including:  

• Internal model consistency (e.g., only one failure mode is active for any component at 
any time);  

• Fault probability analysis (e.g., what is the probability that some fault occurs up to time 
T, or steady state);  

• Time bounded functional assessment (e.g., what is the probability that some component 
is nominal at least up to time T);  

• Limited-fault analysis (e.g., if exactly X component(s) fail(s) by time T (or steady state, 
long run), what is the effect on other failure modes or functions? ).  

PRISMATIC additionally provides culprit identification: determining, if one of the above 
properties has insufficiently large probability, the components of the design which are most 
likely to be responsible. To find culprits, PRISMATIC samples the paths through the model state 
space to obtain traces associated with both faulting and non-faulting simulations. It collects the 
values of the mode variables which are off-nominal in any sampled run, along with the boolean 
evaluation of the property for each sample, and passes them to a decision tree algorithm to 
identify components whose failures are most often associated with the specified system fault. 
PRISMATIC reads the culprits from nodes of the decision tree which indicate the target property 
to be unsatisfied. 

The complexity of the analytic algorithms for verifying a system’s probabilistic properties is 
linked to the size of the search space formed by the possible nominal and off-nominal values for 
each internal mode variable of the components’ functional models. Specifically, the number of 
nodes in the search space is the product of the sizes of these mode variables’ domains. PRISM 
can normally handle search spaces of up to 107–108 nodes on a typical PC, and in certain 
circumstances up to 1011. The basic underlying verification analyses are essentially polynomial: 
quadratic or cubic. However, in practice, PRISM uses numerical approximation algorithms to 
improve this performance. PRISM has been deployed successfully for large, complex 
applications such as verifying protocols for simultaneous resource access by multiple concurrent 
agents [23] and rigorous analysis of wireless device discovery protocols [10]. Direct application 



 

25 
Distribution statement A. Approved for public release. Distribution statement A. Approved for public release. 
Data subject to restrictions on cover and notice page. 

of these analytic algorithms is unlikely to scale to models of the size anticipated for this program. 
PRISM use on very large problems has previously benefitted from problem decomposition [10], 
so to reach the required scalability in PRISMATIC, we structure the models hierarchically, 
decomposing each level of the system into a tractable number of subsystems. This work is 
currently ongoing. 

Although XMC’s translation of a GXML concept description graph to a PRISM model and 
property list is automatic, the library of functional models of the basic components must be 
hand-coded. 

The algorithm that builds the decision tree for culprit identification has a worst-case run time 
of O(nk2), where n is the number of traces through the model state space and k is the number of 
components for which a failure mode is defined in the system. The worst case occurs when all 
component failures happen with equal or nearly-equal probability during both the traces 
associated with the system fault and the traces from non-fault simulations. In addition, a limit on 
the depth of the tree can be specified for models with very large numbers of components, which 
then reduces the scaling to O(nk). In practice, a test case in which 2000 traces are generated from 
a model with 24 components, all of which experience some failures during the simulations, runs 
in under 0.2 seconds on a consumer-grade laptop. 

Culprit identification requires that the model being examined include states associated with 
component failures. The current implementation assumes a finite number of nominal failure 
states for each component. In addition, the process requires a means of identifying the model 
states associated with component failures; currently it is implemented to depend on the PARC 
conventions for naming component mode variables. 

4.2 OSATE Tool Integration 
The Open Source AADL Tool Environment (OSATE) is an Eclipse-based tool for 

generating, maintaining, and performing analysis on models defined in Architecture Analysis 
and Design Language (AADL), an SAE standard. We have created a PRISMATIC plug-in for 
OSATE that: 

• Transforms limited forms of AADL system models into PRISMATIC inputs, 
• Supports the user in specifying system reliability and probabilistic verification queries, 
• Invokes PRISMATIC, and 
• Returns the query results to OSATE. 
All PRISMATIC features are integrated within the OSATE GUI in the form of menubar 

buttons. A graphical indicator of the outcome of the PRISMATIC call is annotated to the 
analyzed file (model) shown in the OSATE navigator pane. 

The methodology to transform generic AADL models into a behavioral state machine (BSM) 
that PRISMATIC can analyze proved to be a significant challenge; ADDL is a highly expressive 
modeling language that provides the developer with many alternative modes for representing 
system function and behavior. It was recognized early on that ADDL-to-PRISMATIC translation 
would need to evolve incrementally, focusing on a subset of model features likely to be 
associated with systems of interest to META-II. As such, discrete transformation ‘strategies’ 
were developed for different AADL model types: 
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1. AADL models in which the BSM is represented via explicit transitions in the “modes” 
section of the model's system implementations.  

2. AADL models in which the BSM is represented via explicit transitions in the modes 
section of the model's system implementations and these implementations may have 
multiple instantiations as “subcomponents.” 

3. Default: AADL models that are augmented with an Error Annex Model (EMA).1 The 
EMA supports expression of dependability-related information such as error propagation 
and stochastic parameters of a system and facilitates describing the BSM relevant to 
PRISMATIC analysis. 

The first two strategies demonstrated simple embedded control system models for which the 
reliability of a set of input sensors was the key focus.  Some key downsides to these strategies 
that emerged included:  1) The standard AADL does not readily support specification of state 
transition rates (e.g. from ‘operating’ to ‘failed’) so they must be added as meta-comments to the 
model, and 2) The BSM modeling needed for PRISMATIC analysis may require the developer 
to modify or insert content in disparate sections of the system AADL model, leading to a 
scattered representation that can be hard to discern in the overall model. 

The effort to scale up to more complex and realistic systems motivated development of the 
EMA-based strategy, and it proved to be the most versatile and least intrusive to integrate with 
the system's functional modeling. It resolves both of the above-mentioned shortcomings by 
allowing development of a discrete BSM model in the EMA library associated with an 
independently developed AADL system model. Successful demonstrations of this transformation 
strategy prepared for the July PI meeting involved PRISMATIC analysis of two different 
portions of a realistic engineered system, Rockwell Collins’ Air Data System. 

One difficulty with the EMA-based strategy was the lack of support for the Error Model 
Annex in OSATE v2, which was released in June 2010 to handle the AADL 2.0 standard. In 
order to leverage the benefits of the EMA we developed a tool for converting AADL-2 models 
(such as the Rockwell-Collins ADS) to AADL-1 and then used OSATE v1.5.8 augmented with 
the PRISMATIC plugins. This shortcoming should soon be resolved as SEI, the developer of 
AADL and OSATE, is incrementally releasing versions of both AADL-2 and OSATE v2 that 
fully support the EMA. 

4.3 External Verification of OpenModelica Models 
Modelica is a language for describing systems, both discrete state machines such as 

Stateflow, and continuous dynamics such as Simulink. OpenModelica is an evolving toolkit for 
constructing and simulating these models. CMU delivered a toolkit that applies Bayesian 
techniques to the problem of statistical modeling checking for systems with continuous 
dynamics, by gathering sample execution traces. SIFT integrated this toolkit with Modelica 
simulations and an automatic mechanism to vary model component parameters (e.g., the nominal 

                                                
1 Dependability Modeling with the Architecture Analysis & Design Language (AADL) 
http://www.sei.cmu.edu/library/abstracts/reports/07tn043.cfm 
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resistance of a resistor in a circuit). The result is a compact, self-contained toolkit that can be 
used to assess probabilistic bounded LTL hypotheses on continuous- or hybrid-dynamics models 
captured in Modelica. 
4.3.1 RLC Model 

Our initial goal with OpenModelica has been to model the example RLC circuit provided by 
Dr. Eremenko, beginning with its relatively simple electrical properties and eventually adding 
thermal effects. The RLC circuit is set up as a low-pass filter (possibly bandpass), meaning that 
lower input frequencies should pass relatively unchanged through the circuit, while higher 
frequencies should be filtered out (have the output voltage decreased). Electrical engineering 
techniques can analytically assess the expected performance of the circuit. With OpenModelica, 
we must use simulation. We are developing methods to run numerous simulations of the circuit 
under different experimental conditions, such as varying the input voltage source’s sinusoidal 
frequency. We assess the output to ensure that the simulation is providing the expected behavior. 
Example properties include: 

• Max (and min) voltages — Assessing the peak values ensures that the circuit 
outputs, for example, no more voltage than is input.  

• Steady-state times — How quickly the circuit settles to steady-state behavior. 
• Transient response — How the circuit responds to impulse inputs (e.g., rise time to 

some output voltage threshold, settling time back to a low output voltage, and 
whether it is under/over/critically damped).  

More realistic properties might include the cutoff or corner frequency where the output of the 
system is down 3 dB, its performance under variations in the component parameters, and its 
phase shift. The problem with the latter property for simulation is that it is a property not just of 
many simulations, but is an analysis/property of the simulations that is not directly supported by 
a pure temporal logic such as LTL. Resolving this difficulty would require a way to run a tool 
such as a curve fitter on the data, extract the frequency/phase/amplitude information, and assess 
its results against numeric values specified in the property. Another approach to analyzing this 
circuit in Modelica would be to simply input the equations that describe the analytic expected 
behavior, but this approach may not enable significantly different analyses. 

Figure 4 shows our first attempt at modeling the RLC circuit using the Modelica language 
and the OpenModelica OMEdit graphical model editing tool, with plots of circuit simulation 
results at various frequencies in Figures 5 through 7.  
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Figure 4: Example RLC Circuit, Modeled in OpenModelica’s OMEdit 

 
Figure 5: Example OMEdit Plot of RLC Circuit Simulation Results with 100-Hz Input 

 
Figure 6: Example OMEdit Plot of RLC Circuit Simulation Results with 10-Hz Input 
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Figure 7: Example OMEdit plot of RLC Circuit Simulation Results with 200-Hz Input 

4.4 Function Failure Logic Modeling 
Function failure logic models are used to capture the nominal and failure modes of 

components and how they interact through exchanges of abstract or qualitative “flows” 
corresponding to energy (e.g., electrical, mechanical, thermal), information (e.g., sensor signals), 
and other influences.   

For example, at one level of abstraction a vehicle powertrain could be modeled as a relatively 
simple combination of engine/motor, transmission, driveshaft, differential, and wheels or tracks. 
Each of these components would have a nominal operating mode, with other state variables 
representing different sub-states such as the selected gear of the transmission and the motor’s 
throttle level (discretized). Flow expressions would represent the movement of fuel into the 
engine, and mechanical energy (torque/power) from the engine through to the wheels or tracks. 
Models of the environment may also be included, to capture interactions between the final drive 
and the ground surface (e.g., various levels of traction/slipping). Thus the nominal component 
behaviors will support reasoning at a coarse level about how the powertrain operates normally, 
and can be used to rapidly verify various normal-operation requirements such as “The powertrain 
shall support speeds up to 40 miles per hour” and “The powertrain shall support missions at least 
10 hours long at half-throttle without refueling.” 

Components typically also have off-nominal modes in which their behaviors are degraded or 
failed entirely. These off-nominal modes can affect the flows between components so that the 
model can be used to reason about the performance of the overall powertrain when, for example, 
the transmission can no longer achieve third gear. These failure modes have associated 
probabilities (likelihoods or failure rates), and thus support probabilistic verification of 
system-level properties. So, rather than simply verifying that a powertrain can support a 10-hour 
mission without refueling, PRISMATIC could prove how likely the system is to satisfy that 
requirement, accounting for the various failure modes, their probabilities, and their impact on 
overall system behaviors. 
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4.5 Scalability Assessment 
We have evaluated the performance of PRISMATIC on both real-world cyber-physical 

system designs and synthetic, scalable cyber-physical system designs. Real-world component 
models and system designs may be drawn from both our prior work on verification and 
cyber-physical systems, as well as other META participants. The government may choose to 
provide cyber-physical system designs or link our team with other performers who are working 
in related areas such as meta-modeling or design tools. Our project plan includes attending joint 
PI meetings and other coordination meetings as necessary to cooperate actively with other 
contractors. 

We can draw on several previous projects to supply existing system designs. For example, 
the PRISM case study repository [32] contains approximately 50 large case studies that will be 
used to evaluate the underlying techniques developed for PRISMATIC. These case studies cover 
a wide range of application domains including, for example, wireless communication systems, 
communication protocols and power management schemes. 

To conduct more controllable evaluations of PRISMATIC’s performance and scalability, we 
have experimented with synthetically-generated cyber-physical system designs that can be scaled 
to various sizes. We used the Relay component from our model library to synthesize an 
arbitrarily complex system design of Relays in series. We then leveraged the new web service 
feature of PRISMATIC by depoying it on a grid of could computing nodes inside Amazon Web 
Service's Elastic Computing Cloud (EC2) infrastructure. 

The approach to creating the complex system design involves leverages the compositional 
verification technique (described above in Section 3.3) to create an “abstract” system which will 
represent a set of N components. We then repeat this process for M levels of system hierarchy to 
quickly create very large models. For example when each decomposition involves M=5 levels of 
hierarchy with N=7, components each have a system of 19,608 components: 2,801 are 
abstractions and 16,807 are detailed leaf nodes. 

In order to verify the entire system we applied our abstraction verification tool (ABV) to 
each of these 2801 abstractions in parallel on 64 EC2 servers. This process took 1.9 hours and a 
cost of $2.58. After some architectural refinements we submitted an even larger synthetic model 
for verification: again 5 levels of hierarchy, but this time with 9 components each. This design 
comprises 66,430 components: 7,381 of which are abstractions and 59,049 are detailed leaf 
nodes. Deployed in 16 larger EC2 servers this verification took 1.25 hours and a cost of $40.52. 
Thus the composition of our PRISMATIC web service with the compositional verification 
technique demonstrates that PRISMATIC can scale to model realistically large systems. 
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5.0 CONCLUSIONS 
In the Phase 1 effort, we have developed the PRISMATIC tool to efficiently perform several 

key probabilistic verification functions on complex cyber-physical system designs. PRISMATIC 
verifies the link between system designs and their formalized requirements and can actively 
guide designers to appropriate system modifications when requirements are not met. In 
particular:  

• Our work on compositional and incremental verification on the scalability of 
verification for PRISMATIC expands the reach of formal verification technologies, 
allowing PRISMATIC to verify extremely complex systems and scale well with 
model size.  

• PRISMATIC verifies new system designs quickly and takes advantage of parallel 
processing, exploiting the parallelizability of statistical methods and supporting 
concurrent verification of numerous system properties.  

• PRISMATIC’s compositional and incremental verification techniques support rapid 
re-verification after changes to a cyber-physical system design, minimizing the need 
to re-verify components that are not changed.  

• PRISMATIC provides not only verification of system properties, but moreover helps 
guide debugging and system redesign efforts by identifying culprits and by deriving 
requirements on future design revisions that will move a system closer to compliance 
with desired safety or behavioral specifications.  

• PRISMATIC’s statistical verification methods work for any type of system that can 
be simulated, using any form of probability distributions. Thus, PRISMATIC easily 
combines results from different cyber-physical design disciplines.  

The impact of PRISMATIC on cyber-physical system design will be to make formal 
verification an everyday part of the design process: it is a practical tool that designers can use 
frequently as part of the daily iterative design cycle. PRISMATIC can dramatically reduce the 
need to physically build and test system components to ensure proper operations. When such 
real-world tests are conducted, PRISMATIC’s statistical verification methods help minimize the 
testing required. 
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List of Symbols, Abbreviations, and Acronyms 
AADL Architecture Analysis and Design Language 

ABV Abstraction Verification Tool 

AFRL Air Force Research Laboratory 

AGAR Assume-Guarantee Abstraction Refinement 

ARFF Attribute-Relation File Format  

BDD Binary Decision Diagram 

BSM Behavioral State Machine 

BT British Telecom 

CMU Carnegie Mellon University 

CSP Communicating Sequential Processes 

DARPA Defense Advanced Research Projects Agency 

EC2 Amazon Web Service’s Elastic Computing Cloud  

EMA Error Model Annex 

EPSRC Engineering & Physical Sciences Research Council (UK) 

ERC European Research Council 

ETMCC Erlangen-Twente Markov Chain Checker, a prototype model checker for 
continuous-time Markov chains and a predecessor to MRMC 

MDP Markov Decision Process 

MRMC Markov Reward Model Checker.  A model checker for discrete-time and 
continuous-time Markov reward models that can consume model data 
exported by PRISM 

MTBDD Multi-Terminal Binary Decision Diagrams 

OSATE Open Source AADL Tool Environment 

PABV Parallel Abstract Verifier 

PEPA Performance Evaluation Process Algebra 

PMC Probabilistic Model Checking 

SBML Systems Biology Markup Language 
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SIFT Smart Information Flow Technologies—a small research company 
specializing in intelligent automation and human-centered systems 

SMT Satisfiability Modulo Theories.  SMT solvers generalize SAT solvers to 
arithmetic and other formal theories. 

SPRT Simple Packet Relay Transport 

VLSI Very Large-Scale Integration 
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Glossary 
APMC A statistical probabilistic model checker that uses the PRISM modeling 

language 

GXML Markup language we use for concept description graphs 

INFAMY A research prototype model checker for probabilistic systems that uses the 
PRISM modeling language 

LTL A pure temporal logic 

MATLAB® Simulink® A simulation tool. 

META Program that aims to improve the process of building cyber-physical systems 
by developing new model-based design flows and tools that can capture all 
functional and logical aspects of a system design, allowing design-time 
verification of system behavioral properties 

Modelica A language for describing systems 

NESSUS A probabilistic analysis tool for structural and machanical systems 

OpenModelica A toolkit for Modelica 

PARAM A research prototype model checker for probabilistic systems that uses the 
PRISM modeling language 

PASS A research prototype model checker for probabilistic systems that uses the 
PRISM modeling language 

PCTL PRISM file format for describing target properties 

PRISM Probabilistic model checker, a tool for formal modeling and analysis of 
systems that exhibit random or probabilistic behavior; developed by the 
University of Oxford 

PRISMATIC Unified tool and technique for formal design verification to address the 
challenges of verifying complex cyber-physical system designs before 
manufacturing and testing 

SEI Developer of AADL and OSATE 

Simulink A representation of continuous dynamics 

SAT The Boolean satisfiability problem 

StateFlow A representation of discrete state machines 

XMC Part of PRISM, converts GXML to PRISM and PCTL 
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Yices An SMT solver 

YMER A statistical probabilistic model checker that uses the PRISM modeling 
language 

 




