

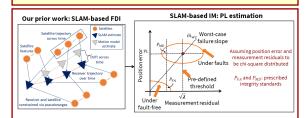
SLAM-based Integrity Monitoring for Multi-Sensors and Multi-Receivers

PI: Grace Gao; Project: CAREER: High Integrity Navigation for Autonomous Vehicles NAV Lab, Department of Aeronautics & Astronautics, Stanford University

Introduction

- · Integrity denotes a measure of confidence in the correctness of position estimated by the navigation system
 - Error bound of estimated position is **Protection Level (PL)**
- In urban environments, measurement redundancy plays a key role in Integrity Monitoring (IM)
- · Challenges of GPS-only integrity in urban canyons
 - · Tall buildings and thick foliage cause satellite blockage, multipath effects and satellite broadcast anomalies
- · Our solution: Leverage urban infrastructure to introduce additional redundancy by aiding GPS receiver with sensors that include
 - · Visual feature-rich surroundings using camera
 - · Cooperative inter-vehicle interactions via ranging

Objectives

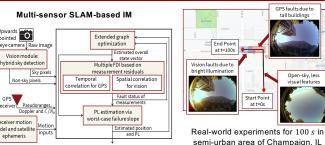

Develop an aided-GPS IM algorithm for urban areas, which

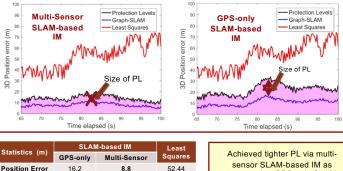
- · Provides a flexible platform for easy scalability across varied sensors;
- · Accounts for multiple measurement faults in different sensors, not just GPS
- Computes the PL of estimated position

Our Prior Work: SLAM-based FDI 111

· Simultaneous Localization and Mapping (SLAM)-based Fault Detection and Isolation (FDI) using GPS-only receiver

- · Simultaneously localizes receiver and landmarks, i.e., satellites
- Performs graph optimization via GPS measurements, motion dynamics of receiver and GPS satellites
- Flexible platform that easily incorporates varied sensors by including sensor features as additional landmarks in the graph
- Requires no prior assumption regarding the distribution of states




SLAM-based IM: PL Estimation

- PL is derived as linear function of the worst-case failure slope of Graph-SLAM · Failure slope is ratio between the position error and measurement residual
- · Worst-case failure slope equals maximum eigenvalue of the failure slope formulation [2]
- · Depends on fault status of measurements but is independent of absolute fault magnitude

Multi-Sensor SLAM-based IM [3]

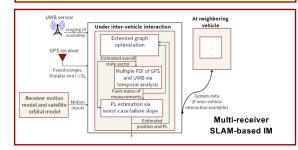
- · Incorporating pixel intensities from fish-eye camera as additional constraints in graph optimization localize key image pixels, receiver and GPS satellites
- · In multiple FDI, each measurement assigned binary fault status, i.e., reliable or unreliable
 - · Temporal analysis of GPS measurement residuals
 - · Analysis of spatial correlation across pixel intensity residuals

compared to GPS-only SLAMbased IM

experiencing both GPS and vision faults

References

[1] S. Bhamidipati, G. X. Gao, "Multiple GPS Fault Detection and Isolation Using a Graph-SLAM Framework," ION GNSS+, Miami, FL, Sept- 2018, pp. 2672-2681 [2] M. Joerger, F. C. Chan, and B. Pervan, "Solution separation versus residual-based RAIM," NAVIGATION: Journal of the Institute of Navigation, vol. 61, no. 4, pp. 273-291, 2014


References

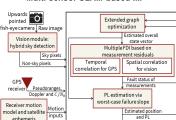
[3] S. Bhamidipati, G. X. Gao, "SLAM-based Integrity Monitoring Using GPS and Fish-eye Camera," ION GNSS+, Miami, FL, Sept 2019, pp. 4116-4129

[4] S. Bhamidipati, G. X. Gao, "Distributed Cooperative SLAM-based Integrity Monitoring Via a Network of Receivers," ION GNSS+, Miami, FL, Sept 2019, pp. 2023-2034

Multi-Receiver SLAM-based IM [4]

- Distributed approach to Graph-SLAM that additionally utilizes Ultra-Wide Band (UWB) ranging across a network of vehicles
- · At each vehicle, simultaneously localization of GPS satellites, itself and interacting vehicles

Receivers	Position Error (m)		Size of PL (m)		
	Multiple	Single	Multiple	Single	
A (satellite blockage)	7.0	8.4	5.2	6.0	Lower position errors and tighter PL via multi- receiver SLAM-
B (Open- sky)	5.9	7.1	4.3	5.8	
C (Multipath)	9.1	12.5	5.4	8.4	
D (Multipath)	7.1	11.6	4.6	9.7	based IM
E (Open- sky)	2.4	3.7	1.8	2.1	


Conclusions

- · Estimated PL in urban areas using SLAM-based IM via
 - · Multi-sensor setup that utilizes GPS and fish-eve camera
- Multi-receiver that include a cooperative network of vehicles
- Using real-world and simulated experiments, demonstrated higher position accuracy and associated tighter PL

Acknowledgements and Contact

This material is based upon work supported by the National Science Foundation under Award Number 1750864. The authors can be reached at gracegao@stanford.edu

Size of PL

10.5

6.5