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Abstract: For large, distributed, and decentrally controlled systems, physical links between
subsystems must be considered in designing local controllers to obtain global system stabi-
lization. This manuscript addresses the task of robustly stabilizing systems with nonlinear
subsystem dynamics and interconnections given by nonlinear algebraic equations, as motivated
by the typical structure of power grids. The proposed approach first transforms the subsystems
into a set of LPV-models, and the interconnections are represented by parameter intervals.
For each subsystem, a local robustly stabilizing controller is synthesized by solution of a
semidefinite program, and the stability of the overall system is implied if interval conditions
for the parameters are satisfied. The method is demonstrated for a simple (yet often used)
instance of a power grid.
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1. INTRODUCTION

This paper addresses the question of how distributed sys-
tems with physical links between subsystems can be con-
trolled robustly in a decentralized scheme. The particular
focus is on systems modelled by nonlinear differential-
algebraic equations (DAE), where the nonlinear dynamics
of the subsystems are connected by algebraic equality con-
straints. The path proposed in this contribution is to map
the dynamics of each subsystem into a linear parameter
varying system (LPVS), and to represent the equality
constraints locally (i.e for each subsystem) by parameter
intervals. For this system structure, the local controllers
can be synthesized separately by semidefinite program-
ming, in order to robustly stabilize each subsystem as well
as the global system.

The class of systems under investigation is motivated by
the typical structure of power grids. While a grid can be
modeled by a large set of nonlinear DAEs for which cen-
tralized control is undesirable, reliable operation in prac-
tice is achieved by separation of concerns: The stability of
rotor angle, frequency, and voltage is treated separately
and achieved by local controllers affecting (mainly) the
synchronous generators (Kundur et al., 2004). The focus
here is on rotor angle stability (the so-called transient
stability), which refers to the ability of synchronous gener-
ators to stay in synchronism after a large disturbance. The
standard controller for this purpose and to achieve a good
damping of electromechanical oscillations is the so-called
Power System Stabilizer (PSS). The classical method of
PSS design is based on modeling synchronous genera-
tors as LTI-systems, restricting the operability to close
vicinities of the chosen points of operation/linearization.
Uncertainties arising from changing operating conditions
(as typical for larger shares of renewable energies), of
neglected nonlinearities, and parameter changes can de-
teriorate the control performance and lead to temporary

shutdown of grid sections. To reduce these effects, dif-
ferent approaches for robustification have been proposed
in the past, see (Fan, 2009) for an overview of handling
nonlinearities and parameter changes. In (Gordon and
Hill, 2008), direct feedback linearization was proposed to
linearize the decentralized system behavior and to design a
robust controller for transient stability. While the coupling
of the generator to the grid was modeled by bounded
uncertain parameters, the damping of oscillations was not
considered. Measures to include damping of power systems
by pole placement and LMI-based design are reported in
(Rao and Sen, 2000; Rao and Paul, 2011; Werner et al.,
2003), where the first reference is on synthesis of state feed-
back controllers, and the latter two on synthesizing output
feedback controllers. The three approaches determine sin-
gle robust controllers for the whole space of uncertainties,
what can lead to rather conservative results. In addition,
it is a drawback of these methods that they are based on
linearization (and thus approximation) of the DAEs rather
than formulating matrix polytopes by analytic expressions
over the parameter space – (Rao and Sen, 2000) classifies
finding a system description as matrix polytope containing
all uncertainties as a difficult task.

An alternative to handle system nonlinearities and param-
eter variations is to use LPVS-based techniques, in which
the complete operating range is defined by the varying
parameters. The controller is not defined constant but
depending on the parameters as well: In (Qiu et al., 2004),
an LMI-based controller synthesis for LPVS has been
proposed for designing a decentralized PSS, and in (Liu
et al., 2006a,b) it is extended to the control of FACTS. The
decentralized models there are also derived by linearizing
around operating points and interpolation in between. In
consequence, the success of this approach is depending on
the underlying gridding. The method in (He et al., 2009)
combines the LMI-based pole-placement technique with



parametrized controllers. In contrast to the previously
referenced approaches, an exact polytopic representation
for a particular instance of a power grid, the so-called
single machine infinite bus system (SMIB) was derived.
The SMIB was already similarly introduced in (He et al.,
2006), and sufficient conditions for stability were provided.
These seem the only papers so far, which use an exact
LPVS representation of a synchronous generator. However,
a main disadvantage of this model is that it contains
the algebraic equations of the grid: While this appears
to be acceptable for a SMIB system, it does not extend
to decentralized design of controllers for larger modular
structures of power systems with several generators.

The main contributions of this paper are to propose first
a modular and exact LPVS representation of nonlinear
DAEs as appearing for power grids. An important aspect
here is that the algebraic equations are not subsumed in
the generator model (as in (He et al., 2006, 2009)), but kept
separately to connect the parameter ranges of several grid
nodes. Secondly, the paper proposes a synthesis procedure
for decentralized controllers of the LPVS structure such
that the overall system is robustly stabilized.

2. LPVS MODELS OF POWER GRIDS

Since the application focus of this work is the control
of transient stability in power grids, the system model
must include electro-mechanical phenomena (which are
well known, of course). In abstract form, such a grid model
represents a nonlinear DAE-system of index 1:

ẋ(t) = f(x(t), y(t), u(t)), 0 = g(x(t), y(t), u(t)) (1)

with time t, the vector x ∈ Rnd of nd differential variables,
the vector y ∈ Rna of na algebraic variables, and the m
inputs u ∈ Rm. In a classical power system, the controlled
subsystem is the synchronous generator. In order to illus-
trate the principles of transforming a grid model of type (1)
in LPVS-form, the SMIB-system is suitable. The following
parts first introduce the corresponding DAE-system and
then describe the representation as LPVS.

2.1 DAE-Model of the SMIB-System

The model equations for general power systems and for the
SMIB-system in particular are standard and can be found,
e.g. in (Milano, 2010) and (Kundur, 1994). The description
is dq-transformed and the dependency of the variables on
the time is omitted for brevity. As can be seen in Fig. 1,
the SMIB-system consists of a synchronous generator con-
nected through a transformer and two parallel lines to
the so-called infinite bus. The model equations can be
separated into the differential equations for the generator
(machine), the algebraic equations for the generator, and
the algebraic equations modeling the grid. The following
description does not eliminate the algebraic variables re-
ferring to the grid by insertion of explicit equations. The
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Fig. 1. SMIB-System (Milano, 2010)

differential equations of the synchronous generator with
the three states rotor angle δ, the angular velocity ω
and the d-axis transient voltage e′q can be described by
(Milano, 2010):

δ̇ = Ωb(ω − ωb), ω̇ =
1

2H

(
τm − τe −D(ω − ωb)

)

ė′q =
1

T ′

dO

(
− e′q − (xd − x′

d)id + vf

)
.

(2)

The mechanical torque τm and the field voltage vf are
the two inputs of the system. The machine-related alge-
braic variables electrical torque τe, machine voltages (dq-
transformed) vq and vd, machine currents iq and id, as well
as the injected active and reactive powers p1 and q1 of the
bus 1 are given as follows:

τe = (vd + raid)id + (vq+ raiq)iq
vq = −raiq + e′q − x′

did, vd = −raid + xqiq
vd = v1 sin(δ −Θ1), vq = v1 cos(δ −Θ1)
p1 = vdid − vqiq, q1 = vqid − vdiq.

(3)

The voltage v1 at a bus with index 1 and its phasor
Θ1 can be calculated with the help of the grid algebraic
equations. These equations can be formulated in general
as the injected active and reactive powers at the bus h:

ph = vh

r∑

k=1

vk(ghk · cosΘhk + bhk sinΘhk)

qh = vh

r∑

k=1

vk(ghk · sinΘhk − bhk cosΘhk).

(4)

Here, r is the number of the buses of the power system, ghk
and bhk are the conductances and susceptances between
the buses h and k. vh and vk are the voltages at the buses,
and Θhk is the difference between the phasors of the two
buses Θhk = Θh−Θk. These equations can represent large
grids with thousands of connections, and a synchronous
generator may be included at each of the buses k. In case
of the simple SMIB-system, only two buses are involved,
and the equations simplify to:

p1 =
v1v2

xs

sin(Θ1 −Θ2)

q1 =
v2
1

xs

−
v1v2

xs

cos(Θ1 −Θ2)
(5)

Here, xs is the sum of the reactances between the two
buses with indices 1 and 2. The voltage v2 and the phasor
Θ2 at the infinite bus 2 are set to constant values, since
the bus represents an infinitely strong grid. The machine
parameters Ωb, ωb, D, H , ra, xd, x

′

d, and T ′

dO denote the
base synchronous frequency, the reference frequency, the
damping coefficient, the inertia constant, the armature
resistance, the d-axis synchronous reactance, the d-axis
transient reactance, and the d-axis open circuit transient
time constant.

2.2 LPV-Model of the Synchronous Generator

To prepare the controller synthesis, the synchronous gen-
erator is now transformed into an LPVS-model with the
states x ∈ Rnx , the outputs y ∈ Rny , the inputs u ∈ Rm,
and the parameters θ(t) ∈ Rp (with the numbers nx, ny,
m, and p of the respective quantities):

ẋ(t) = A(θ(t))x(t) +B(θ(t))u(t)
y(t) = C(θ(t))x(t) +D(θ(t))u(t)

(6)

Finding an LPVS-model of a nonlinear system is a non-
trivial task, and the resulting model is not unique as it



depends on the choice of parameters. The transforma-
tion procedures can, in principle, be categorized in two
classes: linearization around a choice of operating points
and analytic transformation based on algebraic operations.
The latter method has the advantage that the dynamic
behaviour of the original model is preserved. Transfor-
mation procedures of this type for nonlinear differential
equations are proposed in (Tóth, 2010) and (Kwiatkowski
et al., 2006), but cannot immediately be transferred to
the DAE-systems under consideration here. Nevertheless,
the idea of “hiding” the nonlinearities described by the
mentioned authors can be applied to power systems, too.
Given the objective to model networked systems and to
control in a decentralized scheme, the transformation must
be aligned to modular system structures. Hence, the grid
equations must be retained to provide means for coupling
LPVS-models assigned to the grid nodes (in contrast to the
inclusion of the grid equation into the LPVS, as described
in (He et al., 2006, 2009)). Consequently, only the algebraic
equations (3) can be eliminated or included in (2), but not
the algebraic equations contained in (4) and (5).

The main idea in obtaining the LPVS-model is to insert
a suitable choice of algebraic variables into the differential
equations and to assign the remaining nonlinearities to the
varying parameters. Thus, not the whole power system is
described by the following LPV-model, but only the dy-
namic subsystem (i.e. the synchronous generator). When
focusing on transient stability, only the input vf is used for
controller actions, and τm remains constant. The resulting
affine LPVS-model, which is exact, follows with the states

x =
[
δ, ∆ω, e′q

]T
and the input u = vf for D = 0 to:

ẋ =




0 Ωb 0
1

2H
θ1 0 −

1

2H
θ2

−
(xd − x′

d)

T ′

dO

θ3 0 −
1

T ′

dO


x+




0
0
1

T ′

dO


u (7)

with the parameters

θ1 = (τm − (xq − x′

d)id · iq) ·
1

x1

θ2 = iq, θ3 = id ·
1

x1

(8)

The definition of the state x2 corresponds to ∆ω = ω−ωb

in (2). The first state has to be restricted to x1 6= 0. The
restriction does not constitute a problem, since the value
zero is not in the normal operating range of the controlled
rotor angle. The equations (8) show that the differential
system is coupled to the rest of the system through the
machine currents id and iq. The currents are not directly
measurable, but can be calculated from local (with respect
to bus 1) and measurable quantities:

id =
p1

v1
sin(x1 −Θ1) +

q1

v1
cos(x1 −Θ1)

iq =
p1

v1
cos(x1 −Θ1)−

q1

v1
sin(x1 −Θ1)

(9)

These equations are derived from (3) and show that id
and iq are physically coupled. Also the parameters are
inherently coupled, but are treated as independent in the
differential system as indicated by (8). The implications of
these dependencies will be discussed in Sec. 4.

While the derivations in this sections started from the
SMIB-system, it is stressed at this point that larger grids

can be easily built from (7), (8), (9) and partly (3)
by connecting the LPVS-models of several synchronous
generators through sets of grid equations of the type (4).
Hence, the modeling scheme allows one to set up modular
LPVS-models of larger power grids.

3. LPV CONTROLLER SYNTHESIS

The controller synthesis is based on polytopic sets of
the states matrices of the LPVS. Finding a polytopic
LPVS-model is difficult, and the simpler form of an LPVS
in affine form may appear preferable. In the following,
the connection between affine LPVS and the polytopic
representation is addressed. Then, required definitions
of LMI formulations for LTI-systems are provided and
extended to a multi-objective control synthesis based on
polytopic descriptions. The presented LMI formulations
are based on results from (Chilali and Gahinet, 1996;
Chilali et al., 1999; Scherer et al., 1997).

3.1 Affine LPV-Model

The LPVS according to (6) is called affine if for the matrix
A(θ) and a set of matrices {A0, A1, . . . , Ap} it holds that:

A(θ) = A0 +

p∑

j=1

Ajθj , (10)

and if the equivalent formulations apply for B(θ),C(θ)
and D(θ). With parameter limits θj ∈ [θj , θj ], A(θ) varies

within a matrix-polytope with the vertices Ãi correspond-
ing to the extremal values of the parameters. Thus, A(θ)
can be described as a matrix polytope in the form (Apkar-
ian et al., 1994):

A(θ) =

l∑

i=1

αiÃi :

l∑

i=1

αi = 1, αi ≥ 0. (11)

The matrix polytope defines the convex hull of the l

matrices Ãi. Using all combinations of [θj , θj ], the number
of vertices becomes l = 2p. Given a polytopic description
of the LPVS, the LMI-based controller synthesis can be
applied as described in the following subsections.

3.2 LMI Formulations for Pole Placement Design

The control synthesis based on pole placement is prepared
by the following definition and lemma:
Definition 1 – LMI Region (Chilali and Gahinet, 1996):
With symmetric matrices α, β ∈ Rm×m, a subset D of the
complex plane is defined as (with z̄ the conjugate complex
of z):

D = {z ∈ C : fD(z) := α+ zβ + z̄βT < 0}. (12)

Lemma 1. – D-Stability (Chilali and Gahinet, 1996): An
LTI-system with the system-matrix A is D-stable, i.e. the
poles of A are located in the LMI-region D, if a symmetric
matrix XD > 0 exists such that:

α⊗XD + β ⊗ (AXD) + βT ⊗ (AXD)T < 0 (13)

applies where ⊗ represents the Kronecker product.

In the following, the conditions for some LMI-regions
relevant in controller synthesis are specified with XD > 0:



• a left half-space with Re(z) < −α:

2αXD +AXD +XDAT < 0, (14)

(choosing α = 0 leads to the Lyapunov theorem, and
using alternatively the relation > in (14) defines a
right half-space);

• a conic sector bounded by lines through the origin
and with angles ±ϕ to the negative real-axis:

[
sin(ϕ)(AXD +XDAT ) cos(ϕ)(AXD −XDAT )

− cos(ϕ)(AXD −XDAT ) sin(ϕ)(AXD +XDAT )

]
< 0.

(15)

3.3 LMI Formulations for H∞-Design

Given an LTI-system:

ẋ(t) = Ax(t) +B1w(t) +B2u(t)

z(t) = C1x(t) +D11w(t) +D12u(t)

y(t) = C2x(t) +D21w(t) +D22u(t)

(16)

with the states x, the outputs y, the inputs u as given in
(6). The outputs for specifying control performance are z ∈
Rnz , and the exogenous inputs (e.g. disturbances) are w ∈
Rnw . The closed loop transfer function Gzw(s) is defined
as the transfer function from w to z. The H∞-closed-
loop performance ‖Gzw(s)‖

∞
< γ can be guaranteed, if a

symmetric matrixX∞ is found which satisfies the Bounded
Real Lemma according to the following LMI condition
(Chilali et al., 1999):



AclX∞ +X∞AT

cl Bcl X∞CT
cl

BT
cl −γI DT

cl

CclX∞ Dcl −γI


 < 0, X∞ > 0 (17)

Here, the matrices Acl, Bcl, Ccl, and Dcl formulate the
closed-loop system.

3.4 Multiobjective Design of the LPV Controller

For multiobjective control, the LMIs referring to the
desired control goals have to be combined. The LMI
formulations, so far specified for LTI systems, have to
be extended to LPVS, i.e. tailored to the polytopic form
of the model. The LMI formulations can be used either
to synthesize a single invariant controller (as in (Rao
and Paul, 2011; Rao and Sen, 2000; Werner et al., 2003)
for linearized models), or to design a linear-parameter-
varying controller. The following description will focus on
the latter case, and the underlying controller structure is
chosen as a linear parameter-varying feedback controller
of the type Acl(θ) = A(θ) + BK(θ). With an affine or
polytopic K(θ), the resulting closed loop matrix Acl(θ) is
also affine and thus can be described as a polytope as in

(11) with the vertices Ãcli = Ãi + BK̃i, i ∈ {1 . . . , l}. If
the LMIs (14) or (15), and (17) are satisfied for any of the

vertices Ãcli of the polytope A(θ) with the same matrix
X , the properties established by the constraints of the
semidefinite program also hold for the complete polytopic
space of the parameters θ (Apkarian et al., 1995).

The first design step is then to compute the matrix Ãcli,
i ∈ {1 . . . , l} for any vertex of the matrix polytope. For a
selected set of control objectives, the referring LMIs are

formulated for Ãcli. The obtained matrix inequalities are

linearized by using the auxiliary variables Yi := K̃iX . The
solution of the following semidefinite program:

min
K̃i,X

γ (18)

s.t. : (14) or (15), and (17)

is the controller matrix K̃i. By equating A(θ) in (10) and
(11), and by using the conditions for αi in (11), αi can
be obtained from a semidefinite optimization problem,

and the controller follows: K(θ) = K(α) =
∑l

i=1
αiK̃i.

During operation, θ can be determined via (8) and (9) from
measurable quantities. If the semidefinite optimization

problem returns a feasible solution K̃i and X for any

vertex Ãi of the matrix polytope A(θ) (and likewise for
B(θ), C(θ), D(θ)), the LPV-controller K(θ) stabilizes the
model consisting of (7) and (8) for any parameter in
θj ∈ [θj , θ̄j] with j ∈ {1, . . . , p}.

For larger grids with several machines, the physical links
in between the machines are modeled by (4), i.e. for
any machine h the currents (9) formulate the effect from
the rest of the grid on h. If this effect is conservatively
mapped into the parameter interval of machine h, i.e. if
θhj ∈ [θhj , θ̄

h
j ], the robustly stable behavior of any machine

extends to stable behavior of the complete grid.

The intervals can be found iteratively by starting with
a first guess for the interval based on simulations and a
controller with a large LMI region. The parameter range
can then be iteratively reduced until a sufficient system
behavior is reached.

4. SIMULATION RESULTS

This part illustrates and validates the design procedure for
the SMIB-system as described in Sec. 2.1. The considered
scenario is an outage of line two in Fig. 1 one second after
initialization. The line is operable again 6 seconds after
the fault occurrence. The LMI-region chosen for controller
synthesis is the right half plane with 0 > Re(z) > −7 and
a conic sector with the angle ϕ = ±45◦ to the negative real
axis. These criteria account for limiting the velocity of the
closed-loop response and for sufficient damping. For power
quality and stability reasons, it is essential that oscillations
die down in a reasonable time (de Oliveira et al., 2010).
By choosing ϕ = ±45◦, a relative damping of ca, 70% is
enforced. In addition, an H∞-constraint for the transfer
function from an additive disturbance of ẋ2 to the output
x2 is used. The constraint pushes the poles of the closed-
loop system to the left-hand side of the LMI-region. The
controller is synthesized by minimizing the bound γ of the
H∞-criterion considering the LMIs (14), (15), and (17)
for the vertices of the considered matrix polytope of the
closed-loop system.

The parameters for the simulation are taken from example
13.2 in (Kundur, 1994). This reference also contains a
controller of the standard power system stabilizer (PSS)
type for the example, which can serve for a comparison to
the control scheme proposed here. A PSS is usually used
in combination with an excitation system combined with
an automatic voltage regulator (AVR). The inclusion of
an exciter combined with an AVR is omitted for the LPV-
controller, since the focus is on transient stability (i.e. only
rotor angle and angular velocity are of interest here).
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Fig. 2. Rotor angle (x1) and angular velocity (x2) without
control.

Figure 2 first shows simulations results for the uncontrolled
SMIB, revealing large and hardly damped oscillations after
occurrence and removal of the fault. The two states start
to oscillate after the disturbances. While not visible for
the chosen time-interval, the system becomes unstable
after approx. 32 seconds, i.e stabilization by controller
is required. For the same fault scenario, Fig. 3 shows
the simulation results obtained for an LPV-controller
synthesized as proposed before (solid blue line) and for
a PSS (dashed red line). The system is stabilized in both
cases, but the LPV controller realizes a significantly better
damping, such that the steady state values of the fault
state and the original state are reached within 1.5 sec after
line outage and recovery, while the behavior with PSS is
much worse.

With respect to the control action, Fig. 4 reveals a maxi-
mum amplitude for the PSS that is up to 37% larger than
for the LPV-controller. Figure 5 illustrates the position of
the poles for the closed-loop system with LPV-controller
as occurring in the simulation. It is clearly visible that
the poles (blue crosses) lie within the LMI-region (dashed
line) specified for synthesis. This result is implied by the
choice of the limits θi ∈ [θi, θi], and the corresponding
8 vertices of the feasible parameter space. This space is
indicated in Fig. 6 by the box bounded by dashed red
lines. The true course of the parameters θ1 to θ3 obtained
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Fig. 3. Controlled behaviour upon line outage / recovery
with LPV-controller and PSS.
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Fig. 6. Trajectory of the parameter vector of time for the
scenarion and parameter box.

from the simulation is shown as well. Obviously, the pa-
rameter trajectory covers only a rather small region of
the box (approximately a planar manifold with diagonal
orientation inside of the box). This is due to the inter-
dependence of the parameters and the currents id and iq
as specified by (8) and (9). Since the synthesis procedure
leads to a controller which robustly stabilizes the closed-
loop system for the complete box, it is more conservative
than necessary for the considered scenario. Future work
will consider how suitable but less conservative polytopic
enclosures in the parameter space can be obtained from
sets of given scenarios by considering the equations (8)
and (9). The conservativeness corresponding to the box
in Fig. 6 contributes to relatively high u-amplitude doc-
umented in Fig. 4, which are even higher for the PSS.
Since the scenario represents a drastic disturbance for the
power grid, a maximum amplitude of above 15 (or above
20 for the PSS) is higher than typically acceptable for grid
operation. Thus, the last set of simulation tests the two
controllers for typical constraints for the field voltage, i.e.
for umin = −6.4 ≤ u ≤ umax = 7. Though the LPV
controller was synthesized for the unconstrained case, the
simulation in Fig. 7 shows that the controller still stabilizes
the system and is well damped in presence of the input
constraints while some overshoot in x1 occurs upon link
outage. Evidently, the LPV-controller clearly outperforms
the PSS also in this respect. Figure 8 illustrates the corre-
sponding input trajectories for the two controllers.

5. CONCLUSIONS AND FUTURE WORK

The proposed scheme for modular modeling of distributed
systems with physically coupled subsystems represents the
grid node by LPVS and the links by algebraic equations.



0 5 10
60

70

80

90

100

0 5 10
−2

−1

0

1

2

3
x 10

−3

time [s]time [s]

x
1
[◦
]

x
2
[p
.u
.]

LPV

PSS

Fig. 7. States x1 and x2 with LPV-controller and standard
PSS for input saturation.

0 2 4 6 8 10 12
−8

−6

−4

−2

0

2

4

6

8

time [s]

u
[p
.u
.]

LPV

PSS

Fig. 8. Output of the LPV-controller and of the PSS for
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The modeling scheme is scalable and thus applicable to
networks of arbitrary size. The model structure provides
the basis for decentralized controller design: if the param-
eter ranges can be conservatively approximated, the pro-
posed approach to controller synthesis based on semidef-
inite programming can lead to a feedback controller in
LPV-form that robustly stabilizes the grid node for the
polytopic parameter set. If the synthesis finds a feasible
solution to the synthesis step for any network node, and if
the parameter sets for any pair of nodes are consistent with
respect to the grid equations, the grid is overall stabilized.

The considered (simple) example of transient stability for
a SMIB-system shows that the control approach leads to
better results with respects to disturbance rejection and
damping than the commonly used power system stabilizer.
Recent work has successfully applied the principle to larger
grids with 9 to 14 buses. Future work will address the
handling of constraints, the determination of admissible
and conservative parameter spaces, and the inclusion of
additional control objectives (like voltage control for power
grids) more comprehensively.
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