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Abstract: In daily operation of power systems, transient stability is targeted by designing local
standard controllers for narrow operating ranges of any generating node. If deviations due to
disturbances or a higher share of (uncertain) renewable energy occur, exemption routines are
necessary for returning to nominal operation. This paper proposes a method for synthesizing
local robust multivariable controllers such that the interaction between the grid nodes is
explicitly considered. It is shown that variably parametrized controllers in conjunction with
linear-parameter-varying models of the grid nodes can consistently stabilize the system. Since
the control architecture is nevertheless decentralized, the design effort grows moderately with
the size of the power system.
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1. INTRODUCTION

Power grids constitute large distributed systems which can
be represented by nonlinear differential algebraic equa-
tions (DAEs). Reliable operation is typically achieved by
a separation of concerns, resulting in the three stability
categories rotor angle stability, frequency stability, and
voltage stability (Kundur et al., 2004). The category of
concern in this work is the so-called transient stability, i.e.
the subclass of rotor angle stability describing the ability
of synchronous generators to stay in synchronism after
a large disturbance. The standard controller to establish
transient stability and to achieve a good damping of elec-
tromechanical oscillations is the so-called power system
stabilizer (PSS). It represents a decentral controller and
is typically based on modeling the synchronous genera-
tor as a linear time-invariant (LTI) system, i.e. the PSS
is applicable only close to the chosen operating point.
Uncertainties arising from changing operating conditions,
neglected model nonlinearities, and parameter changes can
deteriorate the controller performance – these uncertain-
ties will become more important in the future due to
increasing shares of renewable energies in power grids.

Different schemes to enhance robustness of PSS have been
proposed, see (Fan, 2009) for an overview. The key to
robustness is the handling of the DAE-system including
the nonlinearities and parameter changes. In (Gordon and
Hill, 2008), direct feedback linearization (DFL) was used
to linearize the decentralized system. Robust controllers
for transient stability were designed with considering the
coupling to the grid by bounded ranges for the uncertain
variables. Although the feedback controllers are decentral-
ized, global stability of the considered power system is
shown. The drawback of the DFL techniques is that the
damping of the dynamic behavior may not be sufficient.
Damping can be enhanced by pole-placement, as reported
in (Rao and Paul, 2011; Rao and Sen, 2000; Werner
et al., 2003; Shayeghi et al., 2010). The resulting robust

controllers place the closed-loop poles such that a desired
damping is achieved for the considered parameter range.
In (de Oliveira et al., 2010) this is done by using a classical
PSS structure and computerized tuning of the parameters
for different operating points. The pole-placement is en-
sured by using formulations of linear matrix inequalities
(LMI). In (Rao and Paul, 2011) and in (Werner et al.,
2003), output feedback controllers were synthesized using
LMI formulations as well. These approaches determine
a single robust controller for the whole space of uncer-
tainties. (Rao and Sen, 2000) uses similar techniques for
synthesizing state feedback controllers, and shows the ap-
plication for a relatively large system. Stability of the
whole power system is only shown by simulation. The
common drawback of the techniques in the last three
papers referenced is that they are based on linearization
of the DAEs, rather than using matrix polytopes in order
to obtain a conservative system representation. As stated
in (Rao and Sen, 2000), finding a system description in
the form of a matrix polytope containing all uncertainties
is usually difficult. Furthermore, finding a single controller
for the whole range of uncertainties may be impossible for
large ranges. An alternative approach to handle system
nonlinearities and parameter variations is the use of linear
parameter varying (LPV) techniques, in which the operat-
ing range is defined by varying parameters. The controller
is no longer constant but is defined depending on the model
parameters as well. The stability of the controlled system
can be proven under certain conditions. In (Qiu et al.,
2004), an LMI-based controller synthesis based on LPV-
systems is proposed for designing a decentralized PSS,
and in (Liu et al., 2006b,a) the approach is extended to
the control of FACTS. The decentralized models are also
derived by linearizing for a set of operating points and
interpolation in between. The success of this approach de-
pends on the choice of linearization points. An alternative
approach which combines the positive aspects of LMI-
based pole-placement technique and an LPV-controller



was introduced in (He et al., 2006, 2009). In contrast to the
other methods, an exact polytopic representation for the
single machine infinite bus system (SMIB) was derived,
and sufficient conditions for stability are not violated, as
long as the parameters (and thus the uncertainties) stay
in the range considered in synthesis. To the best of our
knowledge, these are the only papers of other authors so far
which use an exact LPV-model of synchronous generators.
A characteristic of this approach is that the algebraic
equations describing the grid are inserted into the LPV
model. While this seems appropriate for the SMIB system,
the extension of this principle to larger power systems with
multiple generators is not possible since the grid usually
has a large and complicated structure. However, stability
of the whole power system must be considered and among
the discussed contributions global stability was only shown
in (Gordon and Hill, 2008).

In contrast, the contribution of this paper is to propose a
method for designing LPV-controllers for a power system
representation in which any generating node is modeled
by an exact LPV model while the algebraic equations
for modeling the physical coupling of the nodes and the
grid are not included in the LPV model directly. Only the
parameters couple the considered subsystem to the grid.
The algebraic equations are used to formulate consistent
parameter ranges for the node models. The synthesis of
the LPV-controller for any node considers these ranges in
order to guarantee transient stability as well as sufficient
damping of the dynamic behavior for any permissible
parameter value. In contrast to the results presented
already in Schaab and Stursberg (2015), stability of the
whole power system is shown. As further extension of
Schaab and Stursberg (2015), the effectiveness of the
approach is demonstrated on a 9-bus system.

2. POWER SYSTEMS MODEL

2.1 Differential-Algebraic Model of the Power System

Since the focus of this work is transient stability, the
power system model must include the electromechanical
phenomena of generators and buses as described in many
standard texts, see e.g. (Milano, 2010) or (Kundur, 1994).
The following description is dq-transformed and most
physical values are given in per-units. A power system
typically consists of many (hundreds) synchronous gener-
ators (which are the driving force for stabilizing the power
system), transmission lines, and loads. The modeling equa-
tions can be separated into the differential equations of
the generators (machines), the algebraic equations of the
machine, and the algebraic equations of the grid and loads.

The following formulation of the generator equations does
not involve any elimination of algebraic variables. The
differential equations of a generator with index h comprises
one ODE each for the rotor angle δh, the angular velocity
ωh, and the transient voltage e′q,h (d-axis):

δ̇h = Ωb,h(ωh − ωb,h)

ω̇h =
1

2Hh

(
τm,h − τe,h −Dh(ωh − ωb,h)

)

ė′q,h =
1

T ′

dO,h

(
− e′q,h − (xd,h − x′

d,h)id,h + vf,h

) (1)

The mechanical torque τm,h and the field voltage vf,h
are the two inputs of the machine. The set of machine
parameters include the base synchronous frequency Ωb,h,
the reference frequency ωb,h, the damping coefficient Dh,
the inertia constant Hh, the armature resistance ra,h, the
d-axis synchronous reactance xd,h, the d-axis transient
reactance x′

d,h, and the d-axis open circuit transient time

constant T ′

dO,h. In addition, the algebraic variables of the
machine with index h comprise the electrical torque τe,h,
the machine voltages (dq-transformed) vq,h and vd,h, the
machine currents iq,h and id,h as well as the injected
active and reactive powers ph and qh. These quantities
are determined by the following algebraic equations:

0 = τe,h − (vd,h + ra,hid,h)id,h − (vq,h + ra,hiq,h)iq,h
0 = vq,h + ra,hiq,h − e′q,h + x′

d,hid,h
0 = vd,h + ra,hid,h − xq,hiq,h
0 = vd,h − vh sin(δh −Θh)
0 = vq,h − vh cos(δh −Θh)
0 = ph − vd,hid,h − vq,hiq,h
0 = qh − vq,hid,h + vd,hiq,h

(2)

The voltage vh and its phasor Θh can be calculated using
the grid algebraic equations in matrix notation 1 :




s̄1
s̄2
...
s̄r




︸ ︷︷ ︸
s̄

=




v̄1 0 ... 0
0 v̄2 ... 0
...

...
. . .

...
0 0 ... v̄r




︸ ︷︷ ︸
V̄




ȳ∗11 ȳ∗12 ... ȳ∗1r
ȳ∗21 ȳ∗22 ... ȳ∗2r
...

...
. . .

...
ȳ∗r1 ȳ∗r2 ... ȳ∗rr




︸ ︷︷ ︸
Ȳ ∗




v̄∗1
v̄∗2
...
v̄∗r




︸ ︷︷ ︸
v̄∗

(3)

The connections between the buses are mapped into the
admittance matrix Ȳ , in which a diagonal element yhh is
the sum of all shunt and line admittances connected to
the line. The non-diagonal elements yhk = ykh are the
negative values of the sum of the admittances connecting
the buses h and k, and they equal to zero if no connection
exists. Thus, the admittance matrix is symmetric. One can
also see that the resulting complex power s̄h at the bus h
is equal to the sum of all powers of lines ending at the
bus. The complex value s̄h can be separated in active and
reactive power s̄h = ph + jqh. Loads and transformers are
modeled as constant impedances.

The overall set of equations constitutes a decentralized
model in which h ∈ {1, . . . , r} numbers the buses con-
tained in the grid, and (3) is specified for any bus. A subset
of the buses (and thus of {1, . . . , r}) is associated with
synchronous generators, and a set of equations according
to (1), (2) for any generator is part of the model.

2.2 LPV-Model of a Synchronous Generator

As mentioned above, the dynamics of each generator is
transformed into an LPV-model for subsequent controller
synthesis. With vectors of states xh ∈ Rnx,h , outputs
yh ∈ Rny,h , inputs uh ∈ Rnu,h and parameters θh ∈ Rph ,
the general form the LPV-model is:

ẋh(t) = Ah(θh(t))xh(t) +Bh(θh(t))uh(t) (4)

yh(t) = Ch(θh(t))xh(t) +Dh(θh(t))uh(t) (5)

Since the controller synthesis in the following section uses
a state-feedback scheme, (5) can be omitted in the sequel.

1 A bar •̄ indicates a phasor and an asterisk •∗ the conjugate
complex of the respective variable.



Finding an LPV-model for a given nonlinear system is
a nontrivial task, and the choice of parameters is not
unique in general. Procedures for transforming nonlinear
differential equations into LPV-models using algebraic
operation but no approximation (like linearization) are
described in (Tóth, 2010) and (Kwiatkowski et al., 2006).
The advantage of these procedures is that the dynamic
behavior of the original model is preserved, and thus the
impact of approximations on stability and robustness need
not to be evaluated. Given the overall model as specified
in Sec. 2.1, the objective of the transformation is to
retain a decentralized structure in which any generator is
mapped into a local LPV-model, while the grid algebraic
equations are kept to connect the local models. Thus, the
equations (3) do not become part of the LPV-model as
in (He et al., 2009), but only the algebraic equations (2)
are partially inserted into (1) during the transformation.
Another important criterion for the transformation is that
the transformed model is controllable.

The main idea of the transformation for any generator is
to insert some of the algebraic variables into the differen-
tial equations and to move remaining nonlinearities and
algebraic variables from the differential equations into the
varying parameters 2 θh(t). When focussing on transient
stability, only the input vf,h is used for control action,
and τm,h can be considered as given (i.e. as constant
value). For the generator with index h, the affine LPV-
model of the type (4) is formulated for a state vector

xh :=
[
δh ∆ωh e

′

q,h

]T
, and for the input uh := vf,h. The

model is obtained as:

ẋh =




0 Ωb,h 0
1

2Hh

θ1,h
−Dh

2Hh

−
1

2Hh

θ2,h

−

(xd,h − x′

d,h
)

T ′

dO,h

θ3,h 0 −
1

T ′

dO,h


xh +




0
0
1

T ′

dO,h


uh

(6)

with the following definition of parameters:

θ1,h =
(τm,h − (xq,h − x′

d,h)id,hiq,h)

x1,h

θ2,h = iq,h, θ3,h =
id,h

x1,h
.

(7)

Thus, Ah(θh) depends linearly on the parameters and
Bh is independent of θh. The state x2,h corresponds to
∆ωh = ωh − ωb,h in (1). This LPV-model is an exact
substitute of the original model of the generator, but since
x1,h occurs in the denominator of two parameters, the
range of this variable has to be restricted to x1,h 6= 0.
This, however, is no significant restriction since the value
zero of δh can be avoided in the controlled case. 3

Given the model according to (6) and (7), it is obvious
that a coupling to other parts of the power system is
established through the parameters θh and thus through
the machine currents id,h and iq,h. While the parameters
in (7) are inherently coupled through the variables x1,h,
id,h, and iq,h, they are treated as independently varying
in the subsequent controller synthesis, what may lead to
conservativity.

2 For notational convenience the time dependency in θh(t) is omitted
and denoted by θh.
3 Other choices for the parameters than in (7) were considered, but
were rejected due to the controllability requirement.

3. LPV CONTROLLER SYNTHESIS AND STABILITY

The approach to synthesizing LPV-controllers for the
LPV-models derived in the previous sections is based on
polytopic sets of the parameters in θh. A convenient way
to formulate a polytopic set for the matrix Ah(θh) given
the structure of (6) is an affine representation for interval-
bounded parameters. An LPV-model of type (4) with Bh

independent of θh (as applies for (6)) is called affine if for
the matrix Ah(θh) applies:

Ah(θh) = A0,h +

ph∑

j=1

θj,h ·Aj,h (8)

with matrices Aj,h ∈ Rnx,h×nx,h . For parameter limits

θj,h ∈ [θj,h, θj,h], Ah(θh) varies within a matrix-polytope

with vertices Ãi,h ∈ Rnx,h×nx,h , which correspond to the
parameter bounds. Thus, Ah(θh) can be described as a
matrix polytope by (Apkarian et al., 1995):

Ah =

{
Ah =

lh∑

i=1

αi,h · Ãi,h,

lh∑

i=1

αi,h = 1, αi,h ≥ 0.

}
(9)

and Ah(θh) ∈ Ah. The matrix polytope is the convex hull

of the lh matrices Ãi,h. For all combinations of interval

bounds θj,h and θj,h, the number of polytope vertices is
lh = 2ph . Given a polytopic description of the LPV-system,
LMI based controller synthesis can be applied.

The objective is to obtain an LPV state feedback controller
Kh(θh) for any generator with index h. This controller is
chosen to satisfy criteria of D-stability and robustness in
the H∞-sense (Apkarian et al. (1995)). For the particu-
lar model structure of (6), tailored LMI conditions are
specified for synthesis. By imposing an affine controller
structure Kh(θh), the closed-loop matrix:

Acl,h(θh) = Ah(θh) +Bh ·Kh(θh) (10)

follows to be affine as well, and can thus be formulated as
a matrix polytope as in (9). For vertices of the polytope:

Ãcli,h = Ãi,h +Bh · K̃i,h, (11)

the LMIs need to be specified and solved only for the lh
many vertices Ãcli,h. For H∞-design, the LPV model (4)
has to be extended by appropriate variables to measure
control performance. For the particular structure (6), the
extended model is chosen to be:

ẋh(t) = Ah(θh)xh(t) +Bhuh(t) +B∞,hwh(t)

zh(t) = C∞,hxh(t)
(12)

with xh and uh as in (4), and in addition outputs zh ∈
Rnz,h as well as exogenous inputs wh ∈ Rnw,h (e.g. distur-
bances); nz,h and nw,h denote the number of the outputs
zh and of the exogenous inputs. The closed loop transfer
function Gzw,h(s) is defined as the transfer function from
wh to zh.

Lemma 1. Vertex property of quadratic H∞ performance
(Apkarian et al., 1995): For (12) and a parameter space
Θh, H∞ closed-loop performance ‖Gzw,h(s)‖

∞
< γh is

guaranteed for all possible parameter trajectories θh ∈ Θh,
if a symmetric matrix Xh can be found that satisfies the
bounded real lemma for each of the lh vertices of the
polytope h. For the particular form of (12) with only
Acl,h(θh) being parameter-varying, the vertices for the

closed-loop system are defined by Ãcli,h while the constant



other matrices are set to Bcl,h = B∞,h, Ccl,h = C∞,h

and Dcl,h = 0. The bounded real lemma thus can be
established by the following LMI 4 :


Ãcli,hXh +XhÃ

T
cli,h Bcl,h XhC

T
cl,h

BT
cl,h −γhI DT

cl,h

Ccl,hXh Dcl,h −γhI



 < 0, Xh > 0 (13)

A solution Xh for any vertex implies asymptotic stability
of the closed-loop with the Lyapunov function Vh(x) =
xT
hPhxh and Ph = X−1

h . ✷

According to (Chilali and Gahinet, 1996), an LMI region
can be defined as a subset D of the complex plane for
symmetric matrices α, β ∈ Rm×m:

D = {z ∈ C : fD(z) = α+ zβ + z̄βT < 0}. (14)

Lemma 2. – Quadratic D-Stability (Chilali and Gahinet,
1996): A polytopic system with system-matrix Acl,h(θh) as
in (10) is D-stable with poles contained in the LMI-region
Dh, if there exists a symmetric matrix Xh > 0 such that:

M(Ãcli,h, Xh) = αh ⊗Xh + βh ⊗ (Ãcli,hXh) + . . .

βT
h ⊗ (Ãcli,hXh)

T < 0,
(15)

for all lh vertices of the polytope 5 . ✷

For Xh > 0, the form of the LMI-regions Dh chosen here
combine specifications of a half plane and a conic sector.
The half-plane with Re(z) < −αh is realized by:

2αhXh + Ãcli,hXh +XhÃ
T
cli,h < 0, (16)

Obviously, αh = 0 leads to the Lyapunov theorem. Fur-
thermore, to realize a half plane Re(z) > −αh, the relation
in (16) changes to >. A conic sector with the angle ϕh

between the bounding line and the real-axis is realized by
the following LMI:[

sin(ϕh)(T1) cos(ϕh)(T2)
− cos(ϕh)(T2) sin(ϕh)(T1)

]
< 0, (17)

using the abbreviations T1 := Ãcli,hXh + XhÃ
T
cli,h and

T2 := Ãcl,hXh −XhÃ
T
cli,h.

For multiobjective control, the named LMIs are used in
conjunction. Convexity is enforced by solving the LMIs
with a common matrix Xh. Linearization of the resulting
matrix inequalities is achieved by using the auxiliary

variables Yi,h := K̃i,hXh. Eventually, the semi-definite
optimization problem to be solved is:

min
K̃i,h,Xh

γh (18)

s.t. : (16) or (17), and (13).

If a feasible solution K̃i,h and Xh for any vertex Ãcli,h

of the matrix polytope Acl,h(θh) is obtained, the LPV-
controller Kh(θh) stabilizes the subsystem consisting of
(6) and (7) for any parameter in θj,h ∈ [θj,h, θ̄j,h] with
j ∈ {1, . . . , ph}. In real-time control, θh is measured or
determined from measurable quantities, and Kh(θh) is
calculated. By equating Ah(θh) in (8) and (9) as well as
using the conditions for αh in (9), αh can be determined by
solving a linear optimization problem with ph+1 equations
and lh unknown variables αi,h. The controller follows from

4 The LMI in (13) is equivalent to the one in the reference, but uses
Ph = X

−1

h
as a more suitable notation.

5 ⊗ represents the Kronecker product.

Kh(θh) = Kh(αh) =
∑lh

i=1 αi,hK̃i,h (Apkarian et al.,
1994).

The following assumption introduces the extension of the
stability result to the complete power system:

Assumption 1. For a system with q generators and a grid
as represented by (3), assume that Θh over-approximates
the set of parameters Θh,real, which results for generator
h from the effects imposed by all nodes with ȳ∗hk 6= 0. ✷.

Lemma 3. If, for all buses associated with generators h ∈
{1, . . . , q}, Assumption 1 holds and the controller Kh(θh)
with θh ∈ Θh is synthesized according to the decentralized
solution of (18) for the model (6) and (7), then the power
system (1), (2), and (3) is asymptotically stabilized. ✷

The proof of this lemma is sketched as follows: The as-
sumption Θh ⊇ Θh,real implies that θh conservatively rep-
resents the effects of the power system on the generator h.
The coupling according to (3) is thus replaced by the local
robustly parametrized models. The separate synthesis of
Kh(θh) for each generator leads to the following block-
diagonal structure:




ẋ1

ẋ2

...
ẋq




︸ ︷︷ ︸
ẋ

=




Acl1(θ1) 0 ... 0
0 Acl2(θ2) ... 0
...

...
. . .

...
0 0 ... Aclq(θq)




︸ ︷︷ ︸
A(θ)




x1

x2

...
xq




︸ ︷︷ ︸
x

(19)

If for any h, (18) has a solution, i.e.Kh(θh) and Xh > 0 ex-
ist, then lemma 2 implies asymptotic stability and the ex-
istence of a local Lyapunov function Vh(xh) for the genera-
tor. A global Lyapunov function is obtained by construct-
ing V (x) = xTPx with P = diag(X−1

1 , X−1
2 , · · · , X−1

q ):

Xh > 0 implies V (x) > 0, and dV (x)
dt = xT (A(θ)

T
P +

PA(θ))x < 0 follows from the vertex property of the
polytopic description of A(θ) for any θ(t). Since the LPV-
model (19) was obtained from (1), (2) by exact transfor-
mation, the latter system is asymptotically stable . �

4. SIMULATION RESULTS

The controller synthesis procedure is applied to a 9-bus-
system which is sketched in Fig. 1 and taken from Sec.
2.10 in (Anderson, 2003). Three generators G1, G2 and
G3 are connected to the triangle-structured grid through
the transformers T 1, T 2 and T 3. The loads are denoted by
A, B and C. Each generator is modeled according to (1)
and (2), and the grid structure is cast into an admittance
matrix as in (3). To investigate controller performance,
a particular (challenging) disturbance/fault sequence is
chosen: The system starts from a steady state and has
to change into a second (the nominal one in the reference)
which results from doubling the admittance of the line
between bus 5 and 7 at time 1 sec, i.e. y57, y75, y55 and
y77 of the admittance matrix change. After 9 more seconds,
a severe fault occurs: the shunt admittance of the bus 9
is changed by −100i, i.e. y99 is reduced by −100i. This
change emulates a large current flow to ground, close to
a short circuit. This condition is kept for the rest of the
simulation. First, the scenario is simulated without control
of the generators, Fig. 2: after the first disturbance at 1
sec, the angular velocities x2,h of the three generators drift
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Fig. 1. Structure of the 9-bus-system.

away from the steady state, and the powers ph start to
oscillate but the system remains synchronous. After the
second change at 10 sec the generators lose synchronism,
since G2 and G3 (blue and red lines) start to accelerate
while G3 decelerates. This is due to the fact that the fault
is introduced at bus 9 (i.e. close to G3) causing that the
active power of this generator falls to almost zero (red line)
– thus a stabilizing controller is necessary.

A possible controller choice, used to contrast it to our
proposed scheme, is the use of a standard PSS in combina-
tion with an excitation system and an automatic voltage
regulator (AVR) to control the voltage at the terminal of
the generator. Fig. 3 shows simulations results obtained
with classical AVR-PSS controllers for parameters taken
from (Shayeghi et al., 2010) (same parametrization of the
controllers of G1 and G2). The system remains transiently
stable after the first disturbance, since the angular veloc-
ities of the generators remain synchronous (though the
courses of x2,h drift away from zero). The power values
oscillate but are damped quickly by the PSS. However,
when the second fault is introduced, the system becomes
unstable, as G3 loses synchronism with G1 and G2 (see red
line after 10 sec). The power values enter into an unstable
oscillation and never recover, i.e. classic controllers (typi-
cally designed for a small operating range) become ineffec-
tive for this type of fault. Next, the controller structure and
synthesis procedure proposed in this paper is investigated:
First, appropriate LMI regions have to be specified, which
depend on the impact of the disturbances/faults on the
respective generators – the objective here is to cope with
the two types of effect contained in the scenario with a
single controller for each generator. The LMI regions are
specified such that for any subsystem the location of the
closed-loop poles are: (i) placed in the left half-plane, (ii)
are bounded to the left by Re(zh) > −αh to limit the speed
of response (and thus to avoid numerical problems), and
(iii) to introduce sufficient damping. To enhance damping
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Fig. 2. Simulation for generators without control.
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Fig. 3. Simulation for PSS-AVR control structures.

(see also (de Oliveira et al., 2010)), the conic sectors are
defined to have an angle of ϕh = 45◦, leading to a relative
damping of around 70%. Furthermore, an H∞ constraint
is imposed on the transfer function from an additive dis-
turbance on ẋ2,h to the output x2,h. Though, this kind of
disturbance is not consistent with the LPV description as
given in (6) because the coupling to the grid is completely
realized by the parameters. However, this definition is used
for the controller synthesis to push the poles to the left
hand side of the considered LMI-region.

By using these specifications and transforming the gener-
ator dynamics according to (6), (7), a set of semi-definite
programs (18) can be formulated. The solution by mini-
mizing γh for the vertices of the considered matrix poly-
topes of the closed loop system for each of the subsystems
h leads to the desired controllers. It is stressed that the
LMI solutionsXh and the resulting controllersKh(θ) differ
depending on the considered generator h. Simulations for
x2,h and ph using these controllers are contained in Fig. 4.
It is apparent that the system remains stable during the
complete simulation (in contrast to the previous plots).
For both faults, the angular velocity oscillated but with a
very small amplitude of less than 0.001, and it is damped
down within 1 sec. Furthermore, the amplitudes of ph are
much faster damped than with the PSS-AVR controller.
The largest difference to the PSS-AVR structure occurs for
the second fault: The power amplitudes are not only stable,
but also damped completely within 1 sec. The control
actions for the conventional controller (PSS+AVR) and
the LPV are compared in Fig. 5. The maximum amplitude
of uh for the first transition (after 1 sec) are comparable
for both types of controllers (i.e. for G2 and G3), but the
oscillations last longer for the conventional scheme. For
the LPV scheme, the maximum amplitude of 15 for G1 is
relatively high. Note that the synthesis procedure in the
presented form does not include input constraints; this
is subject of future work. For the second fault (after 10
sec), the control actions of the conventional scheme are
unsatisfactory, as the input of G3 increases above 80. In
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Fig. 4. Simulation for the proposed LPV controllers.
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Fig. 5. Control actions for the conventional (left) and the
LPV control scheme (right).

contrast, the control actions for the LPV controller are
of the same order than for the first transition. (Note the
different scaling of the ordinates in the two parts). For
the implementation of the feedback LPV-controller, the
parameters (i.e. iq,h and id,h) and the states (δh, ωh and
e′q,h) have to be known. All of these quantities can be

measured, calculated, or estimated (Guo et al., 2000).

5. CONCLUSION AND FUTURE WORK

The proposed synthesis technique establishes a decentral-
ized control structure for power systems. The partition
of the overall DAE-model of the power system into nodes
modeled by linear-parameter-varying systems and the grid
algebraic equations to represent the coupling enables one
to synthesize the controllers for the generators separately.
Thus, the local synthesis problems are of moderate size,
and in addition the overall design effort grows moderately
with the size of the power system. For any node, a synthe-
sis procedure based on LMI-formulation and semi-definite
programming was proposed which leads to robustly stable
and well-damped behavior of the generator (in the sense of
transient stability). If ranges for the model parameters of
any node are determined conservatively, the stabilization
of the power system can be concluded. Future work will
address the inclusion of input constraints and the rigorous
criteria to determine conservative parameter set.
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