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PI Hovakimyan visits 

Montessori school of C-U to 

showcase robotics to 

elementary-age students.

Outreach

Motivation Challenge Content Scientific Impact

Broader ImpactImpact on Society

Optimizing Commodity Flow

Socially accommodative 

robot motion planning
Safe and robust robot 

motion execution

Efficient package flow 

and network design

• Efficiency and Effectiveness: co-existing with traditional 

ground delivery system

• Coordination and collaboration: synergistic drone and 

ground networks in the last-mile delivery in populated 

urban areas

• Human-machine interaction: people’s safety and comfort 

with drones flying around

• Market size: USD 860 million in 2021 (projected 

to reach USD 4,964 million by 2030)

• More than 2,000 drone deliveries are occurring 

each day worldwide

• Amazon’s cost per package would be ~88 cents 

per parcel

The proposed delivery network uses autonomous flying robots and existing 

transportation networks to improve last-mile delivery efficiently and safely .
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• Developed algorithmic framework for network-

design and planning problems in LMDP

• Generalized the approach to Parameterized 

Sequential Decision Making (Para-SDM)  

problems

• Pick-Up/Drop-Off Depot LMDP Network 

Design for the City of Urbana-Champaign

References

Multi-Drone Delivery

• Developed two-stage algorithmic 

approach with theoretical guarantees 

• Decomposed the problem to task 

allocation and routing for multiple 

drones to deliver multiple packages to 

minimize make span

Socially-Aware 
Motion Planning

• Developed a novel index 

of human safety perception

• Examined human’s safety 

perception of a flying co-

robot using VR 

physiological and 

behavioral experiments

• Obtained human Preferred 

Stopping Distance (PSD) as 

a function of multiple 

factors.
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Safe Learning with Control
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L1 Adaptive 

Controller

• Trains the RL policy in a nominal environment without 

dynamic variations

• Leverages ℒ𝟏 adaptive control during the policy 

deployment to actively compensate for the dynamic 

variations

• A step forward for incorporating 

drones into daily life.

• More efficient logistics for better 

e-commerce experience.
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An add-on scheme to 

improve the robustness 

of a RL control policy, 

which 

Natural framework for learning 

using 𝒢𝒫 :

• guaranteed performance 

during the learning transients

• improved performance of the 

ℒ1 adaptive controller,

• improved quality of the 

planned trajectory

• Addressed the risks during 

rendezvous posed by

driver behavior uncertainty 

and limited battery life.

• Considered drone-vehicle 

rendezvous over multiple 

possible paths.

• Implemented robust 

heuristics that combines 

Bayesian learning and 

MPC.


