SaTC: CORE: Medium: An Optimization Framework for Identifying Dynamic Risk Management Practices

Challenge:

- Protecting IT systems requires deploying security mitigations under uncertainty in a resource-constrained environment.
- Decisions of which mitigations to deploy and when are interrelated due co-coverage of vulnerabilities, use of shared resources, and precedence relations.
- Effectiveness of mitigations is uncertain and may depend on decisions of adaptive adversaries

Solution:

- This project advances our understanding of how to costeffectively reduce risk by using optimization to make these interdependent planning and security resource allocation decisions
- Innovations include new integer programming models, multi-stage stochastic programming models, and network game models
- Models with adaptive adversaries and coordination between defenders are major focus areas.

Award #2000986

PI: Laura A. Albert <laura@engr.wisc.edu> Co-PI: James R. Luedtke <jim.luedtke@wisc.edu> University of Wisconsin-Madison

Project requirements for security deployment

Scientific Impact:

- This project supports dynamic defensive strategies with the potential to achieve high levels of security without a corresponding increase in cost.
- New algorithmic techniques will identify optimal and near-optimal solutions to practical-sized problem instances quickly.
- Algorithmic advances may have applicability in other domains
- Project seeks to "bend the cost curve" by providing tools to manage risk in costeffective manner, supporting choice of mitigations to implement along with implementation plans

Broader Impact and Broader Participation:

- Mentoring graduate and undergraduate students on research
- "Lab open house" event for undergraduates interested in research (March 2021)
- Doctoral development seminar to retain female and underrepresented minority (URM) graduate students
- Outreach talks to the public and YouTube videos planned
- Science blogging