SaTC: CORE: Small: Partition-Oblivious Real-Time Hierarchical Scheduling (\#1945541)

Man-Ki Yoon and Zhong Shao

Challenge:

- Algorithmic covert timing channel between timepartitions through real-time hierarchical scheduling
- Non-interferent due to budget-enforced partitioning
- But interferent in the sense of information-flow security

Output: Change in the receiver's local state (e.g., local schedule, response time) \rightarrow Signal prediction (0 or 1)

Solutions:

- Blinder: Partition-oblivious real-time hierarchical scheduling (USENIX Security
- Local-schedule transformation
- Makes partition-local schedule deterministic (\rightarrow ZERO covert-channel capacity)
- Preserves even task-level schedulability
- But requires an absence of physical time sources

- TimeDice: Partition-level scheduling randomization (DSN '22)
- Global-schedule transformation
- Randomly `violates` priority relations on-the-fly
- But guarantees partition-level schedulability
- Allows the presence of physical time sources

Impact:

- Demonstrated vulnerabilities in both open-source and commercial realtime operating systems
- Applied solutions to an experimental real-time platform ($1 / 10^{\text {th }}$-scale selfdriving car)
- Enables the use of dynamic timepartitioning (hence, improved CPU utilization) while enhancing information-flow security in the integration of real-time applications
- Backward-compatible and minimally-intrusive \rightarrow advantageous to existing safety-critical systems that require high re-certification costs

