

Western National Sattement Michigan Sattement M

Smart Energy

Thrust 4: Validation and Evaluation

Task 4.2

Validate

across IoT

Domains

Task 4.3

Metrics of

Evaluation

Task 4.1

Validate

across

Thrusts

Challenge:

High randomness in Smart living CPS data patterns

Low profile data integrity attacks hide behind such randomness

Both cyber and physical exploits cause to data integrity attacks

Solution:

- Behavioral invariant design as anomaly detection metric at decentralized cluster level
- Attack Context Generation from invariant's produced signatures
- Trust scoring based on Bioinspired information theory

SATC-2030611, Western Michigan Univ., PI Contact: Shameek Bhattacharjee Email: shameek.bhattacharjee@wmich.edu

SATC- 2030624, Missouri Sc & Tech PI Contact: Sajal K. Das

Email: sdas@mst.edu

Smart Transportation

Thrust 3: Diversity Index Device Trust Model

Task 3.2

Weight and

Order

Augmentation

Task 3.3

Parameter

Learning and

Discretization

Task 3.1

Modified

Diversity Index

Model

Scientific Impact:

- Unified approach for data integrity attack detection is feasible in smart living CPS.
- Theory for low margin attacks
- Common framework works against multiple attack types and strategies.

Broader Impact and Broader Participation: Utilities, Smart City consumers

of Smart Living IoT and CPS

applications Validated with real datasets and testbeds

K-12 & senior design projects,, Workshop on IoT Security for **Smart Living**

4 PhDs. partially supported, 2 undergraduates trained, 3 science projects for K-12 students