
Introduction

- Wearable biosensing devices have become ubiquitous, with applications in the medical domain [8], biometrics [1], and human-computer interaction [3], among others.
- Biosensing devices terminology:
 - Sensor: two- node network, one-way communication
 - Actuator: two-node network, two-way communication
 - Networks of sensors

Electrodes on Flexible Band

Amplifiers and Signal Processing

LED and Detector

Fig. 1: Example biosensing electronics. Left: amplifier commercially available from backyardbrains. Center: custom biosensing electronics developed by the PI.

Problem

- Most of the biomedical devices are not designed with security priorities [4]
- Networks of sensors are also not designed with security as a top priority
- Main reason for lack of security: Digital encryption schemes typically require power-hungry microprocessors, while the power sources of sensors (both battery-powered and energy harvesting sensors) have limited capacity
 - Software implementations on a smartphone can consume 500mAh [6].
 - Field Programmable Gate Array (FPGA) implementations can consume from 170 to 300mW [10].

Proposed Solution: Wireless Hardware Analog Encryption

- Hardware Encryption: layer of hardware security directly incorporated into the sensors as an integral part of the design process will protect the privacy of users
- Analog Encryption: requires lower power and a smaller area on a chip

Applications and Impact

- Biomedical Devices: secure and portable wireless biosensors can be deployed in both hospital and non-hospital settings improving the care received by the patients
- Sensor Networks: Internet of Things (IOT), monitoring of infrastructures in smart cities, coordination of unmanned vehicles, and tracking of wildlife.

WIRELESS HARDWARE ANALOG ENCRYPTION FOR SECURE, ULTRA LOW POWER TRANSMISSION OF DATA

Donatello Materassi¹ University of Minnesota¹

Nicole McFarlene² University of Tennessee ²

Chaos as an analog way to encrypt data

Features of chaotic systems:

- Deterministic behavior that has the appearance of being stochastic
- Identical chaotic systems, with slightly different initial conditions, will diverge
- Despite high sensitivity w.r.t. initial conditions, if appropriately coupled, two chaotic systems can synchronize their states [9]

Principle of Chaotic Encryption Schemes

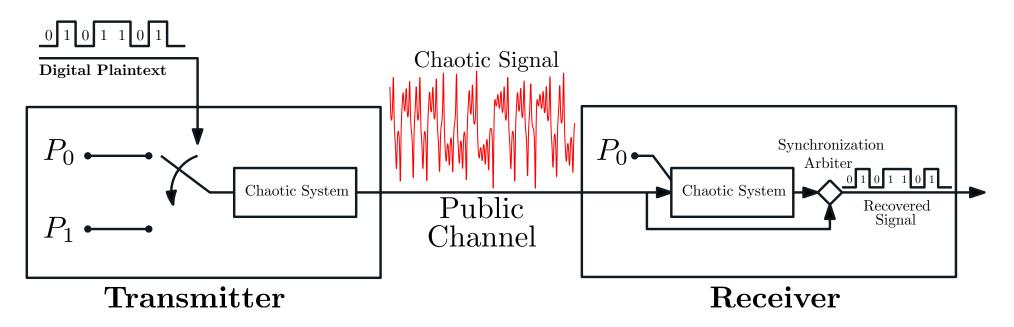
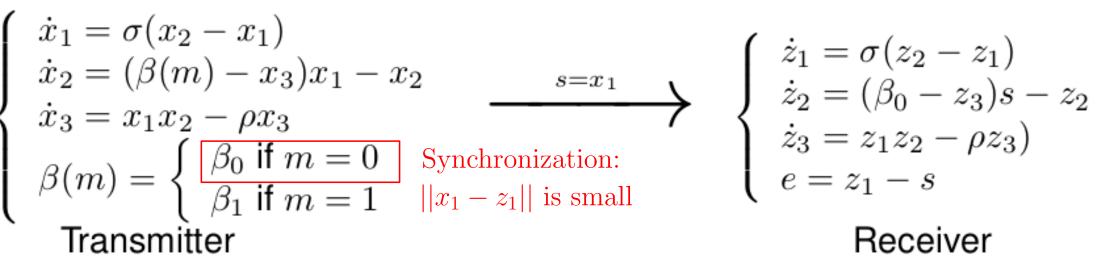
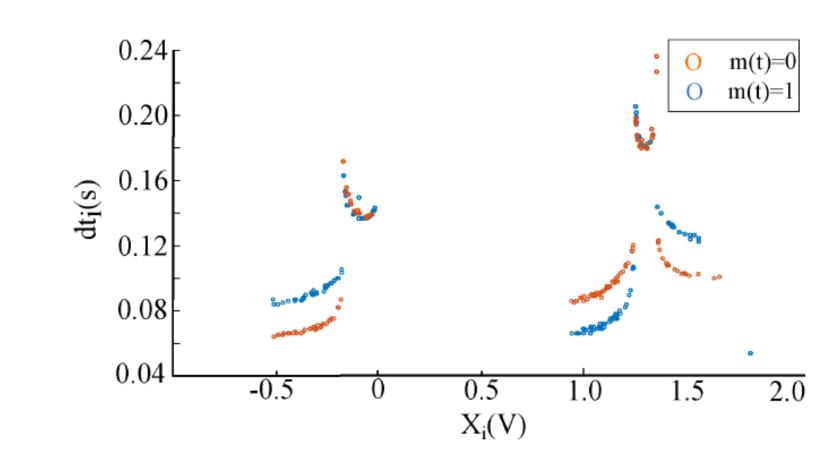
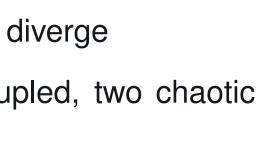



Fig. 2: Chaotic Shifting Key scheme: the digital plaintext modulates the switching of a chaotic circuit in the transmitter between two configuration parameters P0 and P1; the receiver has a copy of the chaotic circuit tuned on the parameter P0; a comparator determines if synchronization is achieved: in case of synchronization the decoded bit is 0, otherwise the decoded bit is 1

Example chaotic system: Lorenz system

Problem with Chaotic Shifting Key scheme





Fig. 4: Different patterns of peaks in public key when transmitting 0 and 1 are detectable.

Secure Chaotic Shifting Key scheme: Time-Shifting CSK [7]

Realization

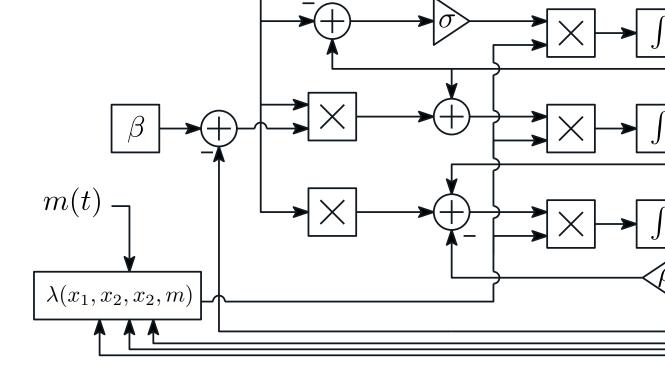
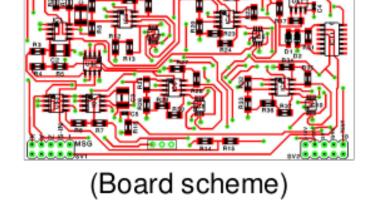



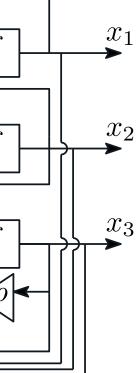
Fig. 6: Block diagram of a TS-CSK transmitter [2]

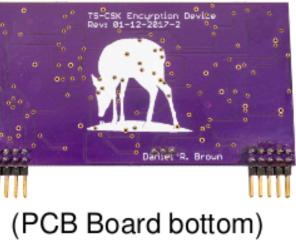
(PCB Board Top)

Fig. 7: A discrete implementation of a TS-CSK encryption scheme [2]

A Temperature Sensor with TS-CSK Analog Encryption [5]

What's Next?


- **1.** Develop and evaluate integrated CMOS circuitry to implement a TS-CSK communication scheme.
- **2.** Develop and test the TS-CSK communication scheme on a wireless EEG sensor.


References

- [1] Savvas Argyropoulos et al. "Biometric template protection in multimodal authentication systems based on error correcting codes". In: Journal of computer security 18.1 (2010).
- Daniel Brown et al. "Practical realisation of a return map immune Lorenz-based chaotic stream cipher in circuitry". In: IET Computers & Digital Techniques 12.6 (2018).
- [3] Yu Mike Chi et al. "Dry and noncontact EEG sensors for mobile brain-computer interfaces". In: IEEE Transactions on Neural Systems and Rehabilitation Engineering 20.2 (2011).
- [4] Mary Beth Hamel et al. "FDA regulation of mobile health technologies". In: *The New England journal of medicine* 371.4 (2014), p. 372.
- [5] Ava Hedayatipour, Kendra Anderson, and Nicole McFarlane. "Live Demonstration: A Temperature Sensor with Analog Encryption". In: 2019 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE. 2019, pp. 1–1.
- [6] Mohammad Masoud et al. "The power consumption cost of data encryption in smartphones". In: 2015 International Conference on Open Source Software Computing (OSSCOM). IEEE. 2015, pp. 1–6.
- [7] Donatello Materassi and Michele Basso. "Time scaling of chaotic systems: Application to secure communications". In: International Journal of Bifurcation and Chaos 18.02 (2008).
- [8] Christoph M Michel et al. "EEG source imaging". In: *Clinical neurophysiology* 115.10 (2004).
- [9] Louis M Pecora and Thomas L Carroll. "Synchronization in chaotic systems". In: *Physical* review letters 64.8 (1990).
- [10] Shady Mohamed Soliman, Baher Magdy, and Mohamed A Abd El Ghany. "Efficient implementation of the AES algorithm for security applications". In: 2016 29th IEEE International System-on-Chip Conference (SOCC). IEEE. 2016, pp. 206–210.

Receiver

