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Introduction

• Wearable biosensing devices have become ubiquitous, with applications in
the medical domain [8], biometrics [1], and human-computer interaction [3],
among others.

• Biosensing devices terminology:

– Sensor: two- node network, one-way communication

– Actuator: two-node network, two-way communication

– Networks of sensors
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Fig. 1: Example biosensing electronics. Left: amplifier commercially available from backyardbrains. Center: custom

biosensing electronics developed by the PI.

Problem

• Most of the biomedical devices are not designed with security priorities [4]

• Networks of sensors are also not designed with security as a top priority

• Main reason for lack of security: Digital encryption schemes typically require
power-hungry microprocessors, while the power sources of sensors (both
battery-powered and energy harvesting sensors) have limited capacity

– Software implementations on a smartphone can consume 500mAh [6].

– Field Programmable Gate Array (FPGA) implementations can consume
from 170 to 300mW [10].

Proposed Solution: Wireless Hardware Analog
Encryption

• Hardware Encryption: layer of hardware security directly incorporated into
the sensors as an integral part of the design process will protect the privacy
of users

• Analog Encryption: requires lower power and a smaller area on a chip

Applications and Impact

• Biomedical Devices: secure and portable wireless biosensors can be de-
ployed in both hospital and non-hospital settings improving the care received
by the patients

• Sensor Networks: Internet of Things (IOT), monitoring of infrastructures in
smart cities, coordination of unmanned vehicles, and tracking of wildlife.

Chaos as an analog way to encrypt data

Features of chaotic systems:

• Deterministic behavior that has the appearance of being stochastic

• Identical chaotic systems, with slightly different initial conditions, will diverge

• Despite high sensitivity w.r.t. initial conditions, if appropriately coupled, two chaotic
systems can synchronize their states [9]

Principle of Chaotic Encryption Schemes
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Fig. 2: Chaotic Shifting Key scheme: the digital plaintext modulates the switching of a chaotic circuit in the transmitter between two

configuration parameters P0 and P1; the receiver has a copy of the chaotic circuit tuned on the parameter P0; a comparator

determines if synchronization is achieved: in case of synchronization the decoded bit is 0, otherwise the decoded bit is 1.

Example chaotic system: Lorenz system

Synchronization:

||x1 − z1|| is small

Problem with Chaotic Shifting Key scheme

Fig. 4: Different patterns of peaks in public key when transmitting 0 and 1 are detectable.

Secure Chaotic Shifting Key scheme: Time-Shifting CSK [7]
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Fig. 6: Block diagram of a TS-CSK transmitter [2]

Fig. 7: A discrete implementation of a TS-CSK encryption scheme [2]

A Temperature Sensor with TS-CSK Analog Encryption [5]

What’s Next?

1. Develop and evaluate integrated CMOS circuitry to implement a TS-CSK
communication scheme.

2. Develop and test the TS-CSK communication scheme on a wireless EEG
sensor.
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