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25 years of Predictive Control Research

Disciplined Control Design with 
Safety Guarantees

Principles
• Lift and project to enable abstractions at 

different level of architecture
• Bound uncertainty to design for robustness
• Use Control Invariants and CLF at end of horizon
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Predictive Control Lab Success – Industrial , Widely Deployed

Solar Power Plans Vehicle PowertrainAutonomous Vehicles Building HVAC

Transportation
Energy
Advanced Robotics
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Todays Complex Control Problems
• Complex architectures
• Hard to find people with system-level knowledge

• Abstraction at each level is complex
• Pushing the performance boundaries
• Limited computation
• Complex human interaction 
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Complex Problem

“Academic Success” in this Context 

Systematic Solution

Provides Guarantees Very Hard

Not Conservative

Generalize
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2012 CPS: Provably Safe Automotive Cyber-Physical 
Systems with Humans-in-the-Loop

OVERVIEW
•When to intervene to obtain a provably safe closed-loop behavior
•How to enable real-time operations on embedded platforms
•How to quantify uncertainty in the environment using large data sets
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Any Impact? -Yes
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Any Impact? - No

• Revolutionize how controllers were designed  
• Provide System Guarantees
• Safety Centric architecture
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Example Safe ACC Design

Front Car Model

Model

Constraints

Sampled
Control invariant Set 

https://colab.research.google.com/drive/1uao3-
OKkTirBqQ68W9_xqit46dROU18S?usp=sharing
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Discussion

• Beautiful disciplined approach
• Beautiful theory with safety guarantees 
• Oversimplified abstraction
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The brake system

Tests carried by
Velardocchia’s Lab University of Torino
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Discussion

• Beautifully, disciplined approach
• Beautiful theory with safety guarantees 
• Questionable Abstraction
• Conservative (to the point of being useless)
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Can we use data and communication to bound 
the risk of failure in a non-conservative way? 

Today’s question 
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The Theory of “Disciplined Learning” in Predictive Control.
Use Data in:

1. Modeling

2. Feasible policy

3. Environment

4. Performance

5. ImplementationController: u(t) = ⇡?
0(x(t))
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Outline

A success on a simple example 
A success on a more complex example
A complex problem without a systematic solution
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Outline

A success on a simple example 
A success on a more complex example
A complex problem without a systematic solution



Borrelli (UC Berkeley) 2022– Slide 17

Data-driven Constrained LQR
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Infinite Time Constrained LQR

Complex Problem  ↔ Curse of dimensionality
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Github and Google Colab Solutions

https://colab.research.google.com/drive/19x7K2jZXDOHKWFs4A7LW_uA0OIrpT9IJ?usp=sharing

https://colab.research.google.com/drive/19x7K2jZXDOHKWFs4A7LW_uA0OIrpT9IJ?usp=sharing
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Starting State

Terminal State

Q
j
(x
)

Iterative LMPC

Constrained LQR
Assumption: A first feasible trajectory at iteration 0 is given
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Iterative LMPC

Assumption: A first feasible trajectory at iteration 0 is given

Constrained LQR

Step 0: Set iteration counter j=0
Step 1: Compute the roll-out cost for the 

recorded data up to iteration j
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Q
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Q0
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Iterative LMPC

Example I: Constrained LQR

Step 0: Set iteration counter j=0
Step 1: Compute the roll-out cost for the 

recorded data up to iteration j
Step 2: Define       which interpolates 

linearly the roll-out cost
Step 3: Run MPC in closed-loop at iteration j+1
Step 5: Set iteration counter j = j+1. Go to Step 1

Qj

Assumption: A first feasible trajectory at iteration 0 is given
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CS0

Iterative LMPC

Constrained LQR

Step 0: Set iteration counter j=0
Step 1: Compute the roll-out cost for the 

recorded data up to iteration j
Step 2: Define       which interpolates 

linearly the roll-out cost
Step 3: Run MPC in closed-loop at iteration j+1
Step 5: Set iteration counter j = j+1. Go to Step 1

Qj

Assumption: A first feasible trajectory at iteration 0 is given
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Closed-loop at 
iteration j=1

Q0
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Iterative LMPC

Example I: Constrained LQR

Step 0: Set iteration counter j=0
Step 1: Compute the roll-out cost for the 

recorded data up to iteration j
Step 2: Define       which interpolates 

linearly the roll-out cost
Step 3: Run MPC in closed-loop at iteration j+1
Step 5: Set iteration counter j = j+1. Go to Step 1

Qj

Assumption: A first feasible trajectory at iteration 0 is given
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Iterative LMPC

Constrained LQR

Step 0: Set iteration counter j=0
Step 1: Compute the roll-out cost for the 

recorded data up to iteration j
Step 2: Define       which interpolates 

linearly the roll-out cost
Step 3: Run MPC in closed-loop at iteration j+1
Step 5: Set iteration counter j = j+1. Go to Step 1

Qj

Assumption: A first feasible trajectory at iteration 0 is given
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Iterative LMPC

Constrained LQR

Step 0: Set iteration counter j=0
Step 1: Compute the roll-out cost for the 

recorded data up to iteration j
Step 2: Define       which interpolates 

linearly the roll-out cost
Step 3: Run MPC in closed-loop at iteration j+1
Step 5: Set iteration counter j = j+1. Go to Step 1

Qj

Assumption: A first feasible trajectory at iteration 0 is given
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Outline

A success on a simple example 
A success on a more complex example
A complex problem without a systematic solution
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Problem Formulation: Multi-modal Collision Avoidance using MPC

min          Deviation of EV trajectory from Reference

s.t. Given EV’s dynamical model and TV’s
multi-modal predictions,

Satisfy speed, lane and actuation constraints,
Avoid collision with TV

MPC =   First optimal input

EV

TV
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Stochastic MPC Formulations
Optimization over closed-loop sequences

Smooth over-approximation of geometry 

Optimization over closed-loop sequences

Smooth over-approximation of geometry

Optimization over closed-loop sequences

Exact, Smooth Reformulation using Lagrange Duality
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Stochastic MPC Formulations: Unprotected Left Demo in CARLA
Optimization over open-loop sequences

Smooth over-approximation of geometry 

Optimization over open-loop sequences

Smooth over-approximation of geometry

Optimization over open-loop sequences

Exact, Smooth Reformulation using Lagrange Duality
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The implementation cost of 
“disciplined” SMPC

Learning Contextual multimodal forecasts
Learning interaction 
Optimization over policies
Optimization over interactive policies
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2019 CPS: Safe Learning for Co-Robots 
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Experimental Tests
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Still far from Safe co-Robots CPS!
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Connected and Automated Mobility
Population getting form A->B in safe, timely and energy efficient way 

Distributed learning control architecture 
Time varying and event triggered communication topology
Cooperation with mixed of local and global objectives
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Connected and Automated Mobility
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Final Remarks
• Complex architectures
• Make an effort  to collaborate with  people with system-level knowledge

• Impact time scale is longer than we expect/promise 
• Do not overpromise and do not give up

• While keeping system-level certification in mind
• Focus on a subsystem and show tangible benefits with non conservative 

solution

• Young engineers often not knowledgeable on advanced  tools for safe CPS
• Bring relevant theory/ techniques faster to our graduate and 

undergraduate programs
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Thanks!


