
Safety Assurance of Cyber-Physical Systems

Through Secure and Verifiable Information Flow Control
PIs: G. Edward Suh, Mark Campbell, Andrew C. Myers (Cornell University)

• Problem: Safety-critical CPS is turning into complex

networked systems vulnerable to remote attacks
– Internet connectivity + vulnerabilities in complex HW & SW

• Objective: Provable security assurance for safety-

critical collision-avoidance operations of autonomous

driving systems
– Holistic assurance across layers: HW, SW, and control algorithms

Objective

Autonomous Driving Testbeds

Technical Approach

• Challenge: need to formally verify security of HW

• Approach: Security type system for Verilog
– Associate security labels with hardware signals

– Statically check hardware-level information flows

• Prototype: 5-stage pipelined processor
– Only needed to change 27 lines out of 1,700

HDL for Hardware Security Verification

Verifiable Hardware Architecture

Collision Avoidance and Safety Analysis

SW-Level Information Flow Control

reg [18:0] {L} tag0[256];

reg [18:0] {H} tag1[256];

wire [7:0] {L} index;

// Par(0) = L Par(1) = H

wire {Par(way)} way;

wire [18:0] {Par(way)} tag_in;

wire {Par(way)} write_enable;

always @ (posedge clock) begin

if (write_enable) begin

case(way)

0: tag0[index] = tag_in;

1: tag1[index] = tag_in;

endcase

end

end

Verilog code: cache tag module

Security check

Security check guarantees:

- No explicit information flow from H to L

- No unintended timing channels: when

the label of an instruction is L, its

execution time should only be affected

by L hardware state

way

tag0 tag1

0

25

5

index

tag_in

write_enable

0

25

5

Core 1 FPGA

GPU

Core 2

O
n
-C

h
ip

 I
n
te

rc
o
n
n
e
c
t

Memory Controller I/O

L1 cache

L2 cache

L1 cache

DRAM

DMA

S NS

Vehicle

NS

S

S NS

S

NS

Problem 2.

Timing

interference

through

shared

resources
Problem 3.

HW bugs (no

formal security

proof)

Problem 1.

Coarse-grained

protection

(one security

level at a time)debugNS

Camera

GPS, IMU,

odometry

LIDAR /

RADAR

Passenger

infotainment

Autonomous driving system

Object detection

and tracking

Scene estimator
(state wrt lane, etc.)

Pose estimator

Tactical planner
(maneuver planning, etc.)

Behavioral layer
(navigation, situation awareness)

Map, Mission, etc.

Collision avoidance
(possible using prediction)

Operational layer
(path generation, control, etc.)

Vehicle

Untrusted Net

World

ground
estimationRaw

Sensor
Data
 - lidar
 - vision
 - radar

probabilistic
tracker

map

tracks

(possible cars,

people, cyclists, etc.)

map

relative

sensor data
segmentation

scene estimator
- object classification
- map relative location

robot

relative

- lidar clusters

- vision detections

- radar detections

probabilistic
anticipation track predictions

(possible cars,

people, cyclists, etc.)

tracks and

confidences

(cars, people,

cyclists)

robot
localization

(map relative)

to "baseline"

collision avoidance

controller

to "intelligent"

collision avoidance

controller
to path planner

Basler camerasVelodyne HD LIDAR (64 lasers)

SICK 1D
LIDAR
(mounted
inside)

Ibeo LIDAR scanners (4 lasers)

SICK 1D

LIDAR

Unibrain camera

DELPHI

millimeter

wave

RADAR

DELPHI millimeter wave RADAR

• Co-design hardware, software, and control algorithms
– Partition autonomous driving systems into multiple security levels

– Build hardware and software with provable full-system

information flow control (IFC) to ensure safety-critical operations

cannot be maliciously affected

– Develop collision avoidance algorithms to translate security

assurance to quantitative safety assurance

• Language-based IFC for formal security assurance

• Today’s hardware is insufficient to protect safety-critical

CPS platforms
– No capability for fine-grained IFC across heterogeneous modules

– No protection against timing interference

– No formal security guarantee

• Redesign architecture for comprehensive and verifiable

“Integrity” protection assurance

• Extend language-based information flow control to

handle integrity and availability on modern SoCs
– Previous work focused on confidentiality protection

– Prove the use of correct information flows, in addition to the

absence of undesired flows

– Handle information flows through heterogeneous computing

elements such as GPUs and FPGAs

• Partition autonomous driving software into multiple

security levels, and formally verify security
– Based on safety-criticality

– Minimize the TCB

– Allow legitimate information flows

• Plan: use two robots for validation
– Segway platform: Robot with cameras, lidar, and IMU/GPS. Use

for year-round testing in controlled environments.

– Skynet: 1 of 6 to complete the 2007 DARPA Urban Challenge. True

validation on autonomous driving car.

• Develop collision avoidance algorithms that leverage

the proposed hardware/software platform, and

evaluate/validate the safety of the integrated system

• Hierarchical collision avoidance algorithms
– “baseline” algorithm finds objects near the car leveraging sensor

data, and takes evasive maneuvers: fast, simple, accurate.

– “intelligent” algorithm uses probabilistic tracking of objects around

the car, and anticipates how and where they may move. Longer

time window to avoid collision, but more complex algorithmically.

• Safety assurance of the integrated CPS system
– Quantitative analysis of the safety–collision probability

– Investigate the tradeoff between collision probability and security

protection levels (timing guarantees, amount of information, size of

TCB, etc.)

Basic collision avoidance
(LIDAR + object detection)

High Integrity

Low Integrity

Advanced collision avoidance
(LIDAR + camera + advanced prediction)

Basic driving functions
(Keep the lane,)

Other autonomous driving

Untrusted
(Passenger infotainment, networks, etc.)

MapData{L} map;

Location{L} destination;

Route{L} naviplan;

Path{H} pathplan;

// compute the navigation route

naviplan.genRoute(map, destination);

// make the route high-integrity

endorse(naviplan, L, H);

// generate a vehicle path

pathplan.genPath(naviplan, ...);

