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• Problem: Safety-critical CPS is turning into complex 

networked systems vulnerable to remote attacks
– Internet connectivity + vulnerabilities in complex HW & SW

• Objective: Provable security assurance for safety-

critical collision-avoidance operations of autonomous 

driving systems
– Holistic assurance across layers: HW, SW, and control algorithms

Objective

Autonomous Driving Testbeds

Technical Approach

• Challenge: need to formally verify security of HW

• Approach: Security type system for Verilog
– Associate security labels with hardware signals

– Statically check hardware-level information flows

• Prototype: 5-stage pipelined processor
– Only needed to change 27 lines out of 1,700

HDL for Hardware Security Verification

Verifiable Hardware Architecture

Collision Avoidance and Safety Analysis

SW-Level Information Flow Control

reg [18:0] {L} tag0[256];

reg [18:0] {H} tag1[256];

wire [7:0]  {L} index;

// Par(0) = L  Par(1) = H

wire {Par(way)}        way;

wire [18:0] {Par(way)} tag_in;

wire {Par(way)}        write_enable;

always @ (posedge clock) begin

if (write_enable) begin

case(way)

0: tag0[index] = tag_in;

1: tag1[index] = tag_in;

endcase

end

end

Verilog code: cache tag module

Security check

Security check guarantees:

- No explicit information flow from H to L

- No unintended timing channels: when 

the label of an instruction is L, its 

execution time should only be affected 

by L hardware state
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• Co-design hardware, software, and control algorithms
– Partition autonomous driving systems into multiple security levels

– Build hardware and software with provable full-system 

information flow control (IFC) to ensure safety-critical operations 

cannot be maliciously affected

– Develop collision avoidance algorithms to translate security 

assurance to quantitative safety assurance 

• Language-based IFC for formal security assurance

• Today’s hardware is insufficient to protect safety-critical 

CPS platforms 
– No capability for fine-grained IFC across heterogeneous modules

– No protection against timing interference

– No formal security guarantee 

• Redesign architecture for comprehensive and verifiable 

“Integrity” protection assurance

• Extend language-based information flow control to 

handle integrity and availability on modern SoCs
– Previous work focused on confidentiality protection

– Prove the use of correct information flows, in addition to the 

absence of undesired flows 

– Handle information flows through heterogeneous computing 

elements such as GPUs and FPGAs

• Partition autonomous driving software into multiple 

security levels, and formally verify security
– Based on safety-criticality

– Minimize the TCB

– Allow legitimate information flows 

• Plan: use two robots for validation
– Segway platform: Robot with cameras, lidar, and IMU/GPS. Use 

for year-round testing in controlled environments. 

– Skynet: 1 of 6 to complete the 2007 DARPA Urban Challenge. True 

validation on autonomous driving car.

• Develop collision avoidance algorithms that leverage 

the proposed hardware/software platform, and 

evaluate/validate the safety of the integrated system

• Hierarchical collision avoidance algorithms
– “baseline” algorithm finds objects near the car leveraging sensor 

data, and takes evasive maneuvers: fast, simple, accurate.

– “intelligent” algorithm uses probabilistic tracking of objects around 

the car, and anticipates how and where they may move. Longer 

time window to avoid collision, but more complex algorithmically.

• Safety assurance of the integrated CPS system
– Quantitative analysis of the safety–collision probability

– Investigate the tradeoff between collision probability and security 

protection levels (timing guarantees, amount of information, size of 

TCB, etc.)
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MapData{L} map;

Location{L} destination;

Route{L} naviplan;

Path{H} pathplan;

// compute the navigation route

naviplan.genRoute(map, destination);

// make the route high-integrity

endorse(naviplan, L, H);

// generate a vehicle path

pathplan.genPath(naviplan, ...);


