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Learning from Demonstrations
• Inverse Reinforcement Learning (IRL): learn reward structure  

• → more robust, generalizable, and explainable 
• Pioneered by co-PI Russel (1998) 
• Apprenticeship Learning (Abbeel & Ng, 2004) 
• Cloud Robotics (Kuffner 2015, Kehoe, Abbeel, Goldberg, 2017)  
• Inference-based (Ramachandran & Amir, 2007; Dimitrakakis & 

Rothkopf, 2011; Levine et al., 2011) 
• Entropy-constrained (Ziebart et al., 2008; Boularias et al., 2011) 
• Active Learning (Lopes et al., 2009)



Formal Framework: Cooperative IRL
• A CIRL is a 2-player cooperative Markov game 

• Human and robot take simultaneous actions, get same reward parametrized by 

• Human preference      initially unknown to the robot 

• This incentivizes the human to teach and the robot to learn this preference 

• Both agents can reason about the robot’s belief state, making it a sufficient 
state representation (together with the environment state) 

• Example: human signals which objects should not be decluttered by replacing 
them in the environment when the robot removes them
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4 Research Objectives 

1. Extend CIRL Formal Framework:  
2. Distributed Sensing, Reward Models using Deep Learning 
3. Learning Hierarchical Task and Reward Structure 
4. Bidirectional / Active Human–Robot Communication



Integrative Application:   
Surface Decluttering 
To increase productivity and safety in homes, machine 
shops, warehouses, offices, and retail stores.
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[Tanwani et al., 2018]  
[Preferred Networks, 2018] 

[Srinivasa et al, 2010] 
[Gupta et al, 2015]

Surface Decluttering Cloud and Fog Robotics 
[Tanwani et al, 2018]  
[Gianni et al, 2016] 
[Kehoe et al, 2015]

Object Recognition 
[Wang et al, 2017] 
[Max et al, 2017]

Robust grasping 
[Lerrel et al, 2015] 

[Sergey et al, 2016] 
[Mahler et al., 2017]

Sim2real Transfer 
[Zamir et al, 2018] 
[ Peng et al. 2017]

Human-Robot Interaction 
[Thomas et al, 2016] 
[Leonel et al, 2016]

Related Work



[Srinivasa et al., 2010]

HERB CMU 2009 
- Unstructured 
grasping

Related Work: Mobile Manipulator Decluttering

PR2 USC 2005 
- Grasping and 
Pushing

[Gupta et al., 2012, 2015]

Low cost mobile robots 
- Unstructured 
grasping in homes

[Gupta et al., 2018]

Surface Decluttering 
- Grasping and Object 

Recognition 
- Fog Computing 
- Sim-to-Real Transfer

[Tanwani et al., 2019]



Universal 
Picking: 
grasp 
diversely 
shaped 
and sized 
novel 
objects
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“Arm farm”

S. LEVINE ET AL. “LEARNING HAND-EYE COORDINATION FOR ROBOTIC GRASPING WITH DEEP LEARNING AND LARGE-SCALE DATA COLLECTION.” IJRR 2017.



Dex-Net  
(Dexterity Network) 

Jeff Mahler, Florian T. Pokorny, Brian Hou, Melrose Roderick, Michael Laskey, Mathieu Aubry, Kai Kohlhoff, 
Torsten Kroeger, James Kuffner, Ken Goldberg. “Dex-Net 1.0: A Cloud-Based Network of 3D Objects for 
Robust Grasp Planning Using a Multi-Armed Bandit Model with Correlated Rewards.” IEEE International 
Conference on Automation Science and Engineering (ICRA) 2016

Jeff Mahler



Large Datasets of 3D Models

Computer Vision Robot Grasping



First Wave:  
Stochastic  
Analytic  
Methods

Robustness

Q

Q (x, u) = 𝔼 [R(x, u)]







Stochastic Grasp Analysis •1,000+ facets per 3D object 

•1,000,000+ candidate grasps per object 

•1,000+ perturbations per grasp 

•1 billion grasp evaluations per object 

•1000 3D objects 

•1 trillion grasp evaluations



Synthetic LIDAR Images

CAPTION GOES 
HERE. REMOVE IF 
NECESSARY.

Rendering Sample Grasps



Dex-Net 
6.7 million examples

Positive Negative



Grasp Quality CNN



Dex-Net

Lidar image Execute best graspGrasp Quality CNN
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From Fixed Base to Mobile Manipulators

24

Fixed Base Industrial Manipulator Mobile Manipulator 



Benno Staub 19.07.2019

Toyota 
Human 
Support  
Robot  
(HSR)

Lower Resolution, Non-Overhead Depth Sensor 
Wider, Less Precise Gripper



Sensor Configuration not Overhead
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▪ Camera elevation angle:  

▪ 14 degrees from vertical



RealSense 
Depth Sensor
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▪ Depth map noise 
radially increases 
outwards up to 10 mm 
from 2 mm  
in the center of the 
image



Control Imprecision
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▪ Retrain Dex-Net with HSR Sensing, 
Gripper, and Precision parameters. 

▪ Combine with Deep Learning Image 
Classifier for Multiple Bins:  a 
composite policy for surface 
decluttering. 

▪ Adapt Dex-Net 4.0 grasping policy to 
the HSR  low precision Mobile 
Manipulator: Dex-Net MM 
 
 
 
 
 

Conjecture:

29



System Architecture
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3D object meshes, Turbosquid,  
Kit, 3dNet, ShapeNet

Physical objects

Synthetic RGBD

Real RGBD

VGG16 Feature 
Pyramids

RGB
Domain  

Classifier

Grasp Sampling  
Depth Image

Grasp Prediction

Object 
locations

Object 
categories

Domain 
Sim/Real

Domain Invariant Object Recognition

Grasp Success 
Probability

Deep Object Recognition

Grasp labels obtained by evaluating grasp  
samples under robust wrench resistance

A.K. Tanwani, N. Mor, J. Kubiatowicz, J. Gonzalez, K. Goldberg. "A Fog Robotics Approach to Deep Robot Learning: Application to Object 
Recognition and Grasp Planning in Surface Decluttering", IEEE International Conference on Robotics and Automation (ICRA), 2019.
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Sim Learning Real Learning
▪ Modeling Inaccuracies 

▪ Adaptation to real 

▪ Synthetic (public) data 

▪ On-premise 

▪ High sample and time complexity 

▪ Privacy and security 
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▪ Domain Invariant Object Recognition (DIOR) model 
▪Sim-to-real transfer 

▪20k synthetic images 

▪200 real images

34

Object Recognition



System Architecture

35



▪ Camera elevation angle [12-17]° 

▪ HSR camera  

▪ 3-10 objects per scene  

▪ 1000 scenes 
 

▪ 2.6M datapoints

Dex-Net MM Dataset
▪ Effect of increasing motion imprecision on grasp labels in  

the training dataset on reducing grasp quality



▪ Camera elevation angle [12-17]° 

▪ HSR camera  

▪ 3-10 objects per scene  

▪ 1000 scenes 
 

▪ 2.6M datapoints

Dex-Net MM Dataset
▪ Effect of increasing gripper throw
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Dex-Net 4.0 

vs. 

Dex-Net MM



|Benno Staub 19.07.2019

Surface Decluttering Setup
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Experiments: Surface Decluttering



Object Categories

1  
easy

2:  
typical

3:  
adversarial

4:  
pathological
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1   2:   3:   4:  



43

Edge:

Robots:

Cloud



Scaled Autonomy: Enabling Human Operators to Control Robot Fleets
Gokul Swamy, Siddharth Reddy, Sergey Levine, Anca D. Dragan, ICRA 2020.





Simulated Navigation

Scaled Autonomy: Enabling Human Operators to Control Robot Fleets
Gokul Swamy, Siddharth Reddy, Sergey Levine, Anca D. Dragan, ICRA 2020.



Real User + Assisted Choice 
(n=12 human subjects)

Gokul Swamy, Siddharth Reddy, Sergey Levine, Anca D. Dragan, ICRA 2020.

Scaled Autonomy: Enabling Human Operators to Control Robot Fleets



Broader Impacts
• Integrate results into AI 

Textbook 
• Develop children’s book 

on human–robot learning 
• Integrated into curricular 

materials
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▪ UC Berkeley’s Public Science Center
We provide a window into Berkeley’s cutting-edge 
research, exciting discoveries and transformative 
innovation

▪ A Learning Lab
We design, develop, test, and study model STEM 
learning programs and products for youth, families, and 
adults from diverse backgrounds in our specialized 
facilities

▪ Global Impact
We disseminate & scale-up our effective and innovative 
learning programs and materials in ways that broaden 
participation in STEM and have local, national, and 
global impact.

The Lawrence Hall of Science 

to inspire and foster science, technology, engineering, and mathematics 
learning for all, especially those with limited access to science
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Publications
Over 30 papers, see:   schoolproject.berkeley.edu  

●G. Swamy, S. Reddy, S. Levine, A. Dragan, “Scaled Autonomy: Enabling Human 
Operators to Control Robot Fleets”, ICRA 2020 
●A. Tanwani, P. Sermanet, A. Yan, R. Anand, M. Phielipp, K. Goldberg, “Motion2Vec 
representation learning from surgical videos”, ICRA 2020 
●Y. Du, S. Tiomkin, E. Kiciman, A. Dragan, P. Abbeel, “Goal Agnostic Assistance 
through Human Empowerment”, ICML, 2020 (submitted) 
●Y. Wu, W. Wu, A. Tamar, S. Russell, G. Gkioxari, Y. Tian, “Bayesian Relational 
Memory for Semantic Visual Navigation”, ICCV, 2019 
●I. Huang, S. Huang, R. Pandya, A. Dragan, “Nonverbal Feedback for Human 
Teachers”, CoRL, 2019 
●S. Russell. Human Compatible: AI and the Problem of Control. Penguin Books Ltd., 
2019 
●B. Goldberg, K. Goldberg, A. Chase. How to Train Your Robot. Lawrence Hall of 
Science, 2019. 
●R. Fox, R. Berenstein, I. Stoica, K. Goldberg, “Multi-Task Hierarchical Imitation 
Learning for Home Automation”, CASE 2019 



NSF NRI 2.0 — Research Themes
• Collaboration

• Collaborate and coordinate effectively with multiple people and robots;

• Learn efficiently from direct experience, people, other robots, and digital media; 

• Inform and instruct multiple people and robots. 

• Interaction

• Reliably recognize and predict the activities of others; 

• Scalability

• Perform a variety of tasks in a variety of situations;
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1. Overview

SCHooL: Scalable Collaborative Human–Robot Learning  
Ken Golderg, Pieter Abbeel, Anca Dragan, Stuart Russell 

University of California, Berkeley

● Learning from Demonstrations (LfD) paradigms lack 
a theoretical framework for scalable human–robot 
cooperative learning and hierarchical planning. 

● The SCHooL project aims to fill this gap by 
investigating scalable robot manipulation, where 
multiple robots collaboratively learn from multiple 
humans with a unified game-theoretic inverse 
reinforcement learning framework. 

● Integrative Application:  “Surface Decluttering”: 
robots that keep specified surfaces clear by 
identifying, grasping, and appropriately relocating 
objects with applications in homes, schools, 
warehouses, offices, manufacturing and machine 
shops, retail stores using an emerging class of 
mobile manipulators such as the Fetch robot.

schoolproject.berkeley.edu contact: <goldberg@berkeley.edu>

2. Research Objectives

1. Formalize framework for scalable collaborative 
inverse reinforcement learning (SCIRL) using theory 
of multiagent games and collaborative learning in 
multiple distributed domains. 

2. Develop deep learning representations of visuospatial 
features and reward functions to extract and share 
deep learning representations for scalable human-
robot learning. 

3. Develop hierarchical task and reward structure to 
increase planning horizon and decrease sample 
complexity by partitioning complex tasks into sub
tasks. 

4. Develop new models to represent and share 
awareness of robot capabilities and robot models of 
human intent to support distributed learning. 

These objectives support the NRI 2.0 themes: 
Collaboration, Interaction, and Scalability and for 
Broader Outreach we are partnering with Lawrence Hall 
of Science and Penguin Books.

3. Problem Formulation

● Cooperative inverse reinforcement learning (CIRL) is 
posed as an n-player cooperative Markov game with 
asymmetric information: only humans observe the 
reward parameters: 

● Robots try to learn the reward parameters by 
querying the humans and by observations of other 
robot actions. 

● Robots learn parameters incrementally from human 
actions and humans incrementally learn to convey 
intentions to the robots.

4. Primary Results 

● A reformulation of AI replacing the standard model 
(optimizing a fixed, known objective) with optimizing 
human objectives that are not fully observed.   

● New Formal models exploring irrationality in reward 
inference; learning to control a fleet of robots by 
humans; learning efficient representation for intrinsic 
motivation.  

● Combining depth sensing and sim-to-real transfer for 
extracting hierarchical task and reward structure.  

Broader Impacts: 
● Project incorporated into 4th Edition of Russel and 

Norvig: AI: A Modern Approach. 2020 texbook. 
● How To Train Your Robot. Elementary school book 

based on the project to inspire young and under-
represented minority readers to explore AI and robot 
learning.  Freely distributing 1800 copies to schools 
and student clubs, featured in IEEE Robot Gift 
Guide. 

See website above for comprehensive list of over 30 papers. 

● G. Swamy, S. Reddy, S. Levine, A. Dragan, “Scaled Autonomy: Enabling Human 
Operators to Control Robot Fleets”, ICRA 2020 

● A. Tanwani, P. Sermanet, A. Yan, R. Anand, M. Phielipp, K. Goldberg, 
“Motion2Vec representation learning from surgical videos”, ICRA 2020 

● Y. Du, S. Tiomkin, E. Kiciman, A. Dragan, P. Abbeel, “Goal Agnostic Assistance 
through Human Empowerment”, ICML, 2020 (submitted) 

● Y. Wu, W. Wu, A. Tamar, S. Russell, G. Gkioxari, Y. Tian, “Bayesian Relational 
Memory for Semantic Visual Navigation”, ICCV, 2019 

● I. Huang, S. Huang, R. Pandya, A. Dragan, “Nonverbal Feedback for Human 
Teachers”, CoRL, 2019 

● S. Russell. Human Compatible: AI and the Problem of Control. Penguin Books 
Ltd., 2019 

● B. Goldberg, K. Goldberg, A. Chase. How to Train Your Robot. Lawrence Hall of 
Science, 2019. 

● R. Fox, R. Berenstein, I. Stoica, K. Goldberg, “Multi-Task Hierarchical Imitation 
Learning for Home Automation”, CASE 2019 

5. Selected Publications


