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< Introduction
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To operate in unstructured environments and allow end-user customization, robots must possess the ability to learn new skills
from demonstrations. We present three research thrusts in skill learning: (a) learning generalizable robot skills, (b) learning
simultaneously in multiple coordinate systems, and (c) benchmarking skill learning algorithms from an end-user perspective.

N /
s : : : : o [ : : : A
_Combined Learning from Demonstration & Motion Planning | | Automated Multi-Coordinate Cost Balancing ,
Demonstrations Importance WEIghting TrajeCtory Prior Cost Balancing ]
g — S ,
{ R (cﬂlgﬁ"?'ﬁe) —> (Caﬁﬁam m [ ?onsmintﬁ
' “Incremental” | , o o , ' v
I |
- - Leawning _ ! e > ooty | Com 1]z >+ —>Convex Optmzton
* ), malt & NS
= 1 2 (Laptacion Tve) | (Lapiacian) 21",
| . p(x) o< exp{—3||lx — pllic
* Encodes demonstrations simultaneously in multiple

differential coordinates.
* Blended cost function incentivizes conformance to the
norm while considering expected variance.
e Learns to balance the relative influence of each
coordinate system directly from the demonstrations.
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Benchmarking Skill Learning from Demonstration
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* Crowdsourced evaluation of statistical (ToGMM) [1], dynamical system (CLF-DM) [2],
geometric (TLGC) [3], and probabilistic (ProMP) [4] approaches on four different tasks.

* Best performance: Tasks with constrained direction of the motion (e.g., writing): TLGC;
Tasks with positional constraints (e.g. reaching): ProMP and TpGMM; Generalization to
starting locations closer to the target: CLF-DM and TLGC.
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