Scalable Robot Autonomy through Remote Operator Assistance and Lifelong Learning

Introduction

To operate in unstructured environments and allow end-user customization, robots must possess the ability to learn new skills from demonstrations. We present three research thrusts in skill learning: (a) learning generalizable robot skills, (b) learning simultaneously in multiple coordinate systems, and (c) benchmarking skill learning algorithms from an end-user perspective.

Combined Learning from Demonstration & Motion Planning

- CLAMP finds trajectories which are *optimal* in terms of demonstrations and *feasible* in the reproduction scenario.
- *Importance weighting* in trajectory prior learning enables learning from demonstrations provided in clutter.
- *Incremental learning* allows skill improvement as more demonstrations become available.

Automated Multi-Coordinate Cost Balancing

- Encodes demonstrations simultaneously in multiple differential coordinates.
- Blended cost function incentivizes conformance to the norm while considering expected variance.
- Learns to *balance the relative influence* of each coordinate system directly from the demonstrations.

	Single Coordinate			Multi-Coordinate	
	Cartesian	Tangent	Laplacian	Uniform W.	MCCB
Handwriting		✓ ✓	✓ ✓	√	\checkmark
Picking		\checkmark			\checkmark
Pressing	\checkmark				\checkmark
Pushing			\checkmark		\checkmark

Orange => most important coordinate, green => best performance

Benchmarking Skill Learning from Demonstration

- Crowdsourced evaluation of statistical (TpGMM) [1], dynamical system (CLF-DM) [2], geometric (TLGC) [3], and probabilistic (ProMP) [4] approaches on four different tasks.
- **Best performance**: Tasks with **constrained direction of the motion** (e.g., writing): TLGC; Tasks with **positional constraints** (e.g. reaching): ProMP and TpGMM; Generalization to **starting locations closer to the target**: CLF-DM and TLGC.
- **Experience level** positively correlates with performance across all approaches.

[1]] S. Calinon. A tutorial on task-parameterized movement learning and retrieval. Intelligent Service Robotics, 9(1):1–29, 2016. [2] S.M. Khansari-Zadeh and A. Billard. Learning control Lyapunov function to ensure stability of dynamical system-based robot reaching motions. Robotics and Autonomous Systems, 62(6):752–765, 2014.

[3] S.R. Ahmadzadeh, M. A. Rana, and S. Chernova. Generalized cylinders for learning, reproduction, generalization, and refinement of robot skills. In Robotics: Science and systems, volume 1, 2017.

[4] A. Paraschos, C. Daniel, J. R. Peters, and G. Neumann, Probabilistic movement primitives. In Advances in neural

[4] A. Paraschos, C. Daniel, J. R. Peters, and G. Neumann. Probabilistic movement primitives. In Advances in neural information processing systems, pages 2616–2624, 2013.

