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Benchmarking Skill Learning from Demonstration

Automated Multi-Coordinate Cost Balancing 

• Encodes demonstrations simultaneously in multiple
differential coordinates.

• Blended cost function incentivizes conformance to the
norm while considering expected variance.

• Learns to balance the relative influence of each
coordinate system directly from the demonstrations.

• Crowdsourced evaluation of statistical (TpGMM) [1], dynamical system (CLF-DM) [2],
geometric (TLGC) [3], and probabilistic (ProMP) [4] approaches on four different tasks.

• Best performance: Tasks with constrained direction of the motion (e.g., writing): TLGC;
Tasks with positional constraints (e.g. reaching): ProMP and TpGMM; Generalization to
starting locations closer to the target: CLF-DM and TLGC.

• Experience level positively correlates with performance across all approaches.

Orange => most important coordinate, green => best performance
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To operate in unstructured environments and allow end-user customization, robots must possess the ability to learn new skills
from demonstrations. We present three research thrusts in skill learning: (a) learning generalizable robot skills, (b) learning
simultaneously in multiple coordinate systems, and (c) benchmarking skill learning algorithms from an end-user perspective.

Combined Learning from Demonstration & Motion Planning

• CLAMP finds trajectories which are optimal in terms of
demonstrations and feasible in the reproduction scenario.

• Importance weighting in trajectory prior learning enables
learning from demonstrations provided in clutter.

• Incremental learning allows skill improvement as more
demonstrations become available.
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