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Get feedback from a remote supervisor to learn better models
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* Viewpoint Selection for Visual Failure Detection

* Human Gaze Following for Human-Robot Interaction

* Active Reward Learning from Critiques

* Incremental Task Modification via Corrective Demonstrations
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* Learning Generalizable Skills from Demonstrations

* Skill Learning in Cluttered Environments
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* Automated Multi-Coordinate Cost Balancing

* End User Evaluation of LfD Methods
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Viewpoint Selection for Visual Failure Detection

Generic View versus Best Static View

Random Forest SVM + AlexNet SVM + VGGNet SVM + GoogleNet SVM + ResNet
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B Generic View M Static View

Active View improvement over Best Static View
15.00%

11.25%

7.50%
3.75%

Random Forest classifier GoogleNet+SVM classifier

[Saran et al., IROS, 2017]



Human Gaze Following for
Human-Robot Interaction

Referential Gaze Mutual Gaze

What is she
looking at?

[Saran et al., IROS, 2018]



Human Gaze Following for
Human-Robot Interaction
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Human Gaze Following for
Human-Robot Interaction

Referential Gaze Mutual Gaze

What is she
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Human Gaze Following for
Human-Robot Interaction
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Active Reward Learning from Critiques

Use active learning to
reduce burden on
supervisor

[Cui et al., ICRA, 2018]



Active Reward Learning from Critiques

Propose maximum
information gain path

————————————

: : | . — _— 0Q(siai,R)l
Update an action 1Pria; € Os:) | R) = Z-e |

______________________ I
to be bad Update an action

% | | to be good
l' I
D1 D2 [

Reward functions



Active Reward Learning from Critiques

Receive human
segmentation of good
and bad subpaths

Gridworld Navigation Task

(a) Trajectory Query | (b) Labeled Query |
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Active Reward Learning from Critiques

Update models
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Active Reward Learning from Critiques
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Incremental Task Modification via Corrective
Demonstrations

Pour in Mug Pour in Mug

[Gutierrez et al., ICRA, 2018] Need to update models with corrections



Incremental Task Modification via Corrective
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Incremental Task Modification via Corrective

Demonstrations
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CLAMP
(Combined Learning from demonstration And Motion Planning)

» Unifies LfD and motion planning
»  Optimal according to the learned skill

» Generalizes to obstacles and positional constraints

L Likelihood }

!

Prior | L MAP Inference }

IRana et al., CoRL, 2017]
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SKill Learning in Cluttered Environments
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demonstrations
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/ 'miny

» Parts of demonstrations closer to obstacles are more likely to
deviate from the desired skill constraints

 We use weighted linear regression
[Rana et al., IROS, 2018]



[Rana et al., IROS, 2018]




Automated Multi-Coordinate Cost Balancing
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Automated Multi-Coordinate Cost Balancing

Joint Density > Cost

(Cartesian, Time) (Cartesian) M'
Joint Density |_ | Cost m °

(Tangent, Time) (Tangent) .
Joint Density > Cost m

(Laplacian, Time) (Laplacian)

\ = = y

MCCB is a task-independent learning framework that
* Encode joint density with time simultaneously in multiple differential coordinates

 Defines a blended cost function that incentivizes conformance to the norm in each
coordinate system while considering expected variance

 Learns optimal weights directly from the demonstrations to balance the relative
influence of each coordinate system






End User Evaluation of LfD Methods

reaching pushing writing 2x pressing*
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Learning robot task
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[Khansari-Zadeh et al., RAS, 2014] CLFDM ®
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[Ahmadzadeh et al., RSS, 2017]
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[Calinon et al., ISR, 2016]




Tasks and Generalization Scenarios

Pressing



User Ratings
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User Ratings: Takeaways

Tasks with constrained direction of the motion (e.g., writing): TLGC (geometric)

Tasks with positional constraints (e.g. reaching): ProMP (statisticall and TpGMM
(probabilistic)

Generalization to starting locations closer to the target: CLF-DM and TLGC (time-
invariant)

No one algorithm consistently yielded successful executions across all generalization
scenarios for any given task

Demonstrator Experience level positively correlated with performance
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Goals for Year 3

Correct errors or ask for help

Request remote critigues or additional demonstrations
Transfer learning

Refine reward functions

Human studies of the full system
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