
Scalable Robot Autonomy through 
Remote Operator Assistance and 

Lifelong Learning

Scott Niekum
Andrea Thomaz

Elaine Schaertl Short

University of Texas at Austin

Sonia Chernova
Harish Ravichandar

Georgia Institute of Technology



Deploy robots in the real world now



Robots will inevitably run into problems

?

?

?

?



Get feedback from a remote supervisor to learn better models



Overview
• UT Austin

• Viewpoint Selection for Visual Failure Detection

• Human Gaze Following for Human-Robot Interaction

• Active Reward Learning from Critiques

• Incremental Task Modification via Corrective Demonstrations

• Georgia Tech

• Learning Generalizable Skills from Demonstrations

• Skill Learning in Cluttered Environments

• Automated Multi-Coordinate Cost Balancing

• End User Evaluation of  LfD Methods

Scalable Robot Autonomy S. Niekum, A. L. Thomaz, S. Chernova

being simultaneously multimodal, fine-grained, task-agnostic, and efficient.
Web-Based Robot Control Remote communication between the robot and human operator is core to

the success of this project. For this research component we will leverage RobotsFor.Me2, a web-based
robot control interface developed under PI Chernova’s NSF CAREER award. RobotsFor.Me is a web-
based interface that enables users to visualize the robot’s environment and its internal state information,
provide both low level and high level input for mobile manipulation tasks, as well as interactively teach
the robot. This web-based framework has been successfully applied to training robots to recognize and
manipulate objects [43, 45] and for learning from demonstration [91, 19]. In the proposed work, we will
leverage RobotsFor.Me to enable remote interaction between human teachers and the robots located at
Georgia Tech and UT Austin. Our research will expand the capabilities of RobotsFor.Me with respect to
novel interfaces for human-robot interaction, including transparency devices for effectively communicating
the robot’s state to the teacher during learning, and novel techniques for providing learning input.

3 Use Case Scenario

Figure 1: System diagram.

In this section, we present an example
use case scenario that illustrates the use
of each of our main system components.
Figure 1 presents a visual overview of
our pipeline. The scenario below fo-
cuses on deploying a robot in a hotel,
with the particular application of setting
up for and clearing a catered breakfast.

First, prior to the deployment of the
robot in a particular setting, we assume
the robot is provided with a general task
specification about the tasks it will need
to perform. This knowledge may include object recognition of common everyday objects (e.g., plate, bottle,
coffee pot), motion primitives for executing common manipulation tasks (e.g., open door, pick up coffee pot,
pour water ), safe navigation capabilities, and finally, high level formal specifications of the tasks the robot
will perform (e.g., clear table, serve coffee). Section 5 presents the representations we will use to encode
the high level tasks and low level primitives, and Section 5.3 outlines the task execution procedure.

The main component of our work focuses on the life-long learning cycle that begins once the robot
initiates task execution. During execution, the robot will perform error detection to classify errors during
the execution of primitives and autonomously decide whether human intervention is required. This deter-
mination goes beyond traditional failure detection, in which systems simply detect hardware errors [77, 95]
or deviations from a nominal path [75, 72]; instead, we wish to (1) detect generalized outcomes of tasks,
subtasks, and primitives, such as whether a pancake is undercooked, browned, burnt, or stuck to the pan
after a cooking action; (2) determine if this outcome changes the world state in a manner that necessitates
a re-plan; and (3) if re-planning fails, contact a call center for assistance. However, before the problem can
be addressed, the robot must be able to describe the problem in a human-interpretable manner and provide
sufficient situational awareness for the operator to assess the correct course of action. This information
will include information on the current state of the robot, including its perceptual state, goals and subgoals
of the task (e.g., set up coffee pot within set out breakfast), and details on what elements of the execution
failed. Additionally, prior work in this area [80] has shown that providing the remote operator with 5-10 sec-
onds of playback information about the robot’s most recent actions significantly improves operator response
time.

Once the problem has been identified, the operator is able to correct task execution using high-level
and low-level task refinement, as needed. In the current state of the art, this correction simply takes the

2The http://robotsfor.me service integrates the Robot Management System [8] and Robot Web Tools [78], developed by Chernova.
Both packages are available as open source and have been adopted by multiple international academic and corporate research labs.
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Without initial demonstrations, first queries are random, and
therefore not shown. Once some state-action pairs are labeled
accordingly, the system can then make intelligent queries. As
Figure 5 shows, the second and third queries by ARC are
mostly concentrated around the area with high rewards. By
exploring around states with high rewards, the algorithm can
then quickly learn which features should be weighted higher
than others.

B. Performance Evaluation
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Fig. 6: Averaged policy losses (with 95% confidence bars) after 4
(left graph) and 12 (right graph) iterations over 100 different 8⇥8
gridworlds

Figure 6 shows the averaged policy loss after 4 and 12
iterations of the three algorithms in 8⇥8 gridworlds with
different number of features. The larger the feature size is, the
more complex the randomly generated domain becomes. The
width of the gap between averaged policy losses of ARC and
AS after 4 iterations is similar to that of ARC and Random,
however, after 12 iterations, the averaged policy losses of ARC
are very close to that of the AS algorithm and are lower
in domains with smaller features. Since the information gain
estimate of ARC only becomes accurate if the current belief
distribution is somewhat accurate, ARC therefore performs
better than AS in simpler domains.
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Fig. 7: Averaged policy losses in 100 different 8⇥8 gridworlds with
48 features and queries of size 8

Figure 7 specifically presents performances of the three
algorithms in 8⇥8 gridworlds with 48 features. Figure 7(a)
shows that, per interaction with the expert, ARC outperforms
uniform sampling by a large margin and it slowly catches
up with the performance of the AS algorithm. Figure 7(b)
shows the performance of the three algorithms in terms of

per labeling effort 2 and under this criteria ARC outperforms
the other two algorithms since ARC’s path queries on average
each contains only 2 to 3 segments. Therefore, we believe that
ARC is more efficient in terms of reducing teaching burden.

The above results agree with our hypothesis that ARC, with
less teaching effort, will achieve the performance of the active
sampling algorithm. At the same time, the more accurate the
current belief model becomes, the more accurate the expected
information gains are predicted by ARC.
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Fig. 8: Averaged policy losses of ARC under different noise ratios
and ↵ vlaues in 100 different 8⇥8 gridworlds with 16 features and
queries of size 8

Figure 8 shows how noise could affect the performance of
ARC and the performance of ARC can improve by lowering
the confidence factor ↵.
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Fig. 9: Average Performance on Place-An-Object Task

Figure 9 shows the policy losses and the entropy over reward
functions for all three algorithms in Place-An-Object task.
In this domain, we see that ARC outperforms the other two
algorithms in terms of efficiency in reducing policy loss and
reducing the entropy over reward functions after five iterations,
with very high confidence. This is mainly because the domain
is relatively small so that just a few labels can lead to a roughly
accurate model for estimating information gain. Besides, one
of the ground truth reward functions leads to multiple equally
optimal actions in certain states, where the AS algorithm won’t
be able to sample all optimal actions 3 but ARC can.

2Here we consider providing a segmentation point, a demonstration or a
label as a unit of labeling effort. Providing a demonstration at a previously
demonstrated state, or a label to a previously labeled action, is considered a
tenth of the original labeling effort.

3This is also the reason why the entropy over reward functions for AS went
higher after 7 iterations.
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novel interfaces for human-robot interaction, including transparency devices for effectively communicating
the robot’s state to the teacher during learning, and novel techniques for providing learning input.

3 Use Case Scenario

Figure 1: System diagram.

In this section, we present an example
use case scenario that illustrates the use
of each of our main system components.
Figure 1 presents a visual overview of
our pipeline. The scenario below fo-
cuses on deploying a robot in a hotel,
with the particular application of setting
up for and clearing a catered breakfast.

First, prior to the deployment of the
robot in a particular setting, we assume
the robot is provided with a general task
specification about the tasks it will need
to perform. This knowledge may include object recognition of common everyday objects (e.g., plate, bottle,
coffee pot), motion primitives for executing common manipulation tasks (e.g., open door, pick up coffee pot,
pour water ), safe navigation capabilities, and finally, high level formal specifications of the tasks the robot
will perform (e.g., clear table, serve coffee). Section 5 presents the representations we will use to encode
the high level tasks and low level primitives, and Section 5.3 outlines the task execution procedure.

The main component of our work focuses on the life-long learning cycle that begins once the robot
initiates task execution. During execution, the robot will perform error detection to classify errors during
the execution of primitives and autonomously decide whether human intervention is required. This deter-
mination goes beyond traditional failure detection, in which systems simply detect hardware errors [77, 95]
or deviations from a nominal path [75, 72]; instead, we wish to (1) detect generalized outcomes of tasks,
subtasks, and primitives, such as whether a pancake is undercooked, browned, burnt, or stuck to the pan
after a cooking action; (2) determine if this outcome changes the world state in a manner that necessitates
a re-plan; and (3) if re-planning fails, contact a call center for assistance. However, before the problem can
be addressed, the robot must be able to describe the problem in a human-interpretable manner and provide
sufficient situational awareness for the operator to assess the correct course of action. This information
will include information on the current state of the robot, including its perceptual state, goals and subgoals
of the task (e.g., set up coffee pot within set out breakfast), and details on what elements of the execution
failed. Additionally, prior work in this area [80] has shown that providing the remote operator with 5-10 sec-
onds of playback information about the robot’s most recent actions significantly improves operator response
time.

Once the problem has been identified, the operator is able to correct task execution using high-level
and low-level task refinement, as needed. In the current state of the art, this correction simply takes the

2The http://robotsfor.me service integrates the Robot Management System [8] and Robot Web Tools [78], developed by Chernova.
Both packages are available as open source and have been adopted by multiple international academic and corporate research labs.
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CLAMP 
(Combined Learning from demonstration And Motion Planning)

• Unifies LfD and motion planning

• Optimal according to the learned skill

• Generalizes to obstacles and positional constraints

Prior

Likelihood

MAP Inference

[Rana et al., CoRL, 2017]
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Skill Learning in Cluttered Environments

• Remove external influences (clutter) from the
demonstrations

• Parts of demonstrations closer to obstacles are more likely to
deviate from the desired skill constraints

• We use weighted linear regression
[Rana et al., IROS, 2018]



[Rana et al., IROS, 2018]



Automated Multi-Coordinate Cost Balancing
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Automated Multi-Coordinate Cost Balancing

MCCB is a task-independent learning framework that

• Encode joint density with time simultaneously in multiple differential coordinates

• Defines a blended cost function that incentivizes conformance to the norm in each
coordinate system while considering expected variance

• Learns optimal weights directly from the demonstrations to balance the relative
influence of each coordinate system





End User Evaluation of  LfD Methods

(dynamical system)

(statistical)

(geometric)

(probabilistic inference)
[Paraschos et al., NIPS, 2013]

[Khansari-Zadeh et al., RAS, 2014]

[Ahmadzadeh et al., RSS, 2017]

[Calinon et al., ISR, 2016]



Tasks and Generalization Scenarios 

Reaching Pushing

Pressing Writing



User Ratings

Reaching Pushing Writing

Pressing (segmented) Pressing



User Ratings: Takeaways

• Tasks with constrained direction of the motion (e.g., writing): TLGC (geometric)

• Tasks with positional constraints (e.g. reaching): ProMP (statistical) and TpGMM
(probabilistic)

• Generalization to starting locations closer to the target: CLF-DM and TLGC (time-
invariant)

• No one algorithm consistently yielded successful executions across all generalization
scenarios for any given task

• Demonstrator Experience level positively correlated with performance
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Goals for Year 3

• Correct errors or ask for help

• Request remote critiques or additional demonstrations

• Transfer learning 

• Refine reward functions 

• Human studies of the full system



Thank You!


