
The 4th NSF Secure and Trustworthy Cyberspace Principal Investigator Meeting (2019 SaTC PI Meeting)
October 28-29, 2019 | Alexandria, Virginia

Scalable	Secure	Computations	on	Intel	
SGX	via	Lazy	Program	Partitioning	

h"ps://exo-sgx.github.io/	

Yuzhe	Tang,	Syracuse	University	

Technique	1:	Mapping	Melbourne	ShufBle	
•  Two	data	passes.	
•  Each	pass	obliviously	access	the	external	storage.	
•  At	the	same	time,	each	pass	obliviously	access	the	internal	storage.	

•  Mapping	Melbourne	shuf>le	to	SGX	
•  Isolate	leaky	internal	storage	to	cache	

•  Map	the	oblivious	external	storage	safely	to	untrusted	memory.	

• Technique	2:	Isolate	
Cached	data	by	Intel	TSX	
	
Useful	TSX	capability:	Abort	
transaction	upon	cache	write-back	
• Proposed	idea	for	cache	isolation:	

•  Equating	cache	misses	with	
cache	write-back	(making	all	
cache	lines	dirty	in	the	
transaction)	

• Technique:	Data	preloading	
•  Assurance	of	isolation	
•  Low	transaction	abort	rate	

	

Goal: Cache-miss Obliviousness
•  Cache	miss	obliviousness:	

•  Data	obliviousness	is	a	property	that	the	trace	of	
memory	access	during	a	program	execution	is	
independent	to	the	value	of	data	accessed.	

•  Cache	miss	obliviousness:		
•  Cache-miss	sequence	is	data	oblivious	(for	
security).	

•  Cache-hit	sequence	is	non-oblivious	(for	
performance).	

	

Our	Approach	
• Key	idea:	Combining	isolation	with	
obliviousness.	
• This	work	focuses	on	data	shuf>ling	
which	is	a	fundamental	operation		in	
many	computations.	
• Engineering	Melbourne	Shuf>le	on	SGX	
with	resilience	of	memory-access	attacks.	
	

Evaluation	Results	
	

Introduction
• Intel	Software	Guard	eXtension	(SGX)	is	ISA	extension	for	security,	released	in	recent	Intel	
Skylake	CPU:	Encrypted	memory,	Data-path	access	control,	Security-isolated	exec.	environment.	
• Intel	SGX,	despite	its	security	on	other	aspects,	is	known	to	suffer	memory-access	side-channel	
attacks	(SP’15)	
• This	work	is	about	defending	such	attacks:		

•  Security	goal:	Defending	all	such	attacks		at	both	software	and	hardware	levels.	
•  Performance	goal:	with	minimal/ideally	small	overhead.	

Add	Your	Logo	and/or	project	info	here	
Award	ID#:	

Abort	Rate:	Our	approach	is	
close	to	ideal	lower	bound		

Perf.:		Our	approach	is	faster	
than	shuf>ling	by	sort		
Scalability:	Our	approach	
supports	larger	dataset	than	
naively	shuf>ling	in	
transaction	

