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About Smart City Applications  

l  Real-time sentience 
l  Real-time closed-loop control 

l  Service, hardware or human actuations 
l  Ecosystem 

l  Numerous stakeholders (citizens, city, 
government, private, ...) 

l  Developers 
l  Cyber infrastructure 
l  Physical deployments 



Why Cloud-Sensor Systems? 
l  As smart spaces and smart cities proliferate into a 

massive scale, applications & their sensor data will 
be pressed to move to the Cloud. 
l  Economies of scale and highly anticipated reductions in 

service cost 
l  A neutral and common platform where various stake 

holders can have access to the sensor-based services 

l  As a result, we will have Cloud-Sensor Systems 
l  Cyber-physical systems spanning the clouds and the 

sensors. 

l  Dilemma! Sensors are external resources that 
cannot be farmed or provided on demand by the 
cloud 



Cloud Involvement in the Smart 
City: Energy Sector 

Global Home Energy Management Revenues by Segment (2011-2016) 
(OnWorld Report on Smart Homes) 

“Services are 
pressed to move 
to the cloud” 



Smart Cities – An economical 
pressure and an impending 
development lacking  
Cloud-Sensor Infrastructure 

U-City, Korea, A 7-years, $25B Smart City Investment  



Talk Overview 
l  Why cloud-sensor systems? 

l  Key challenges  

l  Our approach 
l  Optimization-centric architecture: Cloud-Edge-Beneath (CEB) 

l  Programming models under CEB 

l  Bi-directional Waterfall Optimization Framework  

l  Agenda for future research 

l  References 



Key Challenges in Cloud-
Sensor Systems 

l  How can we support open-ended, friction-
free, continuous integration of sensors and 
devices into the cloud?  

l  How can we program the cloud-sensor 
system? Do we have an ecosystem that can 
unleash powerful app development? 

l  How can we use the cloud wisely? How can 
we keep the cloud economically scalable?  

l  How to sustain high system dependability 
despite sensor energy limitation? 



Cloud Scalability Challenge 
l  Extensive external interactions between cloud 

services and the physical sensors.  
l  Expensive cloud “attention”, not only per sensor, but 

per each sensor duty cycle.  
If sensors push data once every minute, then millions of 
sensors will produce billions of sensor-cloud interactions, daily.  

l  Requires tremendous processing power, memory 
resources and huge incoming/outgoing cloud traffic.  

l  As a result, the cloud economies of scale per sensor 
will not stand. …. That is, even though the 
Cloud is elastic, its auto-scaling rate will be 
cost-prohibitive, if it is left unrestrained. 



Sensor Energy Challenge 
l  Limited energy of sensor devices 

l  Limited battery capacity, or inadequate harvest 
supply rate. 

l  In smart city scenarios, a sensor may be queried 
by multiple independent cloud applications each of 
which requires periodical readings of the sensor 
(classical redundant data acquisition problem).  
l  Deplete sensor energy rapidly à unreliable and 

unavailable sensor-based services. 
Without involving the applications in the 
optimization problem, minimizing sensor 
energy consumption will remain blind-sided 
and limited.  



From Challenges View to the Value 
View: What is the Value of the IoT? 

l  As the value of the network was once estimated, the 
value of the IoT will need to also be estimated. 

l  The value of the IoT will depend on how programmable 
and manageable the IoT is in face of its massive growth 
rate, heterogeneity, and stringent energy requirements.  



Cloud, Edge and Beneath  
Architecture (CEB) 



How Sensors could be 
Connected to the Cloud? 
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Cloud, Edge & Beneath (CEB) 
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Sensor Service Pass-Through 

Sensor 
Service 

Bundle Repo 
Web	  

Interface	  App Cache DDL	  Bundle	  
Generator	  

... 

Event 
Service Event 

Service Goals of CEB: 
• Autonomic Integration 

platform 

• Programming platform 
& Ecosystem 

• Optimization 
enabling platform: 
•  Data Caching 
•  App Caching 
•  Energy Efficiency 
•  Sentience 

Efficiency 



CEB Optimization Principles  

l  Energy Efficiency 
l  Degree to which total energy used to provide 

sensor readings is minimized over a period of time 
l  Sentience Efficiency 

l  Degree to which unnecessary sentience of a 
sensor reading is minimized over a period of time 

l  Suppressed System Dynamics 
l  Minimize all movements of requests and data 

(requests by apps down to sensors, and data by 
sensors up to the apps).  



Beneath Layer in CEB 

Beneath Layer: 
•  CEB is built on top of Atlas 

which is an implementation 
of the service-oriented 
device architecture (SODA) 

•  Physical layer refers to the 
sensors and their 
descriptions written in 
Device Description 
Language (DDL).  

•  Sensor platform layer hosts 
first prong of the Atlas 
middleware which is 
responsible for sensor 
integration, configuration, 
init., data acquisition, 
caching, and device control.  
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Atlas Communication Layer 

Atlas Processing Layer 

Atlas Device Interface Layer 
          Servo                         8 Analog                              GPIO                               32 Analog                         16 Digital 

          Processor 

          ZigBee                                         Ethernet                                    Wi-Fi                                       Antenna 

ATLAS Sensor platform & Middleware 
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Edge Layer: 
•  Runs second prong of the 

Atlas middleware which uses 
OSGi as its basis to provide 
service discovery and 
configuration.  

•  The bundle generator creates 
a pair of software bundles for 
each sensor: 1) edge sensor 
service to be hosted at the 
Atlas edge middleware, 2) 
cloud sensor service to be 
uploaded to the Atlas cloud 
middleware. 
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Device Description Language 
http://www.icta.ufl.edu/atlas/ddl/ 



Cloud, Edge & Beneath (CEB) 
Cloud Layer: 
•   Based on OSGi Cloud in 

which application is composed 
by loosely-coupled modules as 
OSGi services hosted at a 
distribution of cloud nodes.  

•   Third prong of the middleware 
•   Provides cloud-wide 

discovery, configuration and 
'wire-up' of services across 
different OSGi frameworks in 
the dynamic cloud environment 
into applications and services.  
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Cloud Application Runtime (CAR): 
• It is the container where application 
services are deployed and managed.  
• An application makes invocation to 
the cloud sensor services at the ACM 
to acquire raw sensor readings from 
the physical deployment.  

Atlas Cloud Middleware (ACM): 
• For every edge, there exists a 
corresponding ACM at the cloud. It 
hosts the cloud sensor service (passed 
from the edge) to be subscribed to by 
other cloud services.  
• It acts as the cloud gateway to the 
lower layers, and meanwhile, it hosts 
the most basic “clouding” of sensors 
based on which sensor-based cloud 
applications can be built.  



Event-driven SODA Application Model (E-SODA) 

Events 
Rule-Oriented  
Event Engine 
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. . .  

Cloud Sensor Services 

Cloud Applications 

Streams 
Continuous 
Queries 
Query Engine 

Programming in CEB 



l  Rule-oriented event processing paradigm 
l  Defines a set of Event/Condition/Action (ECA) rules. 
l  An application is a composition of interrelated services 

together performing the function of rule evaluation. 
l  Event Services 

l  Subscribe to and invoke the cloud sensor services 
from the ACM to implement event-level abstractions of 
sensor data.  

E-SODA Application Model 
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Event Services in E-SODA 
l  An event service listens to the occurrence of a particular event 

which is a logical expression over sensor values.  
l  The event has a Boolean value which is evaluated to true when 

the event occurs otherwise to false.  
l  To provide information about an event that occurred, event 

parameters propagate along an event representation tree (ERT).  
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e.g., 



Bi-directional Waterfall 
Optimization Framework  



Bi-directional Waterfall 
Optimization Framework  
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Optimization Algorithms 
Interplay 
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l  AFCA-1: Application Fragment Caching Algorithm 1 (Cloud-
Edge) 

l  BPA-Shortcut: Branch Permutation & Shortcut Algorithm 
l  AFCA 2: Application Fragment Caching Algorithm 2 (Edge-

Beneath) 
l  AAAS: Application-Aware Adaptive Sampling Algorithm  



l  Requirements: 
l  Large number of sensors (city-scale) of diverse sensor types.  
l  Diversity of sensor data characteristics (e.g., data type, 

variance, and tolerance to time fidelity). 
l  Large number of events with different event characteristics (e.g., 

rare, static, dynamic, simple, complex).  

l  Two types of cloud-sensor system expansion: 
l  Horizontal: Applications are built on dedicated, proprietary or 

exclusive sensors. Deploying a new application requires 
installing its associated sensor devices.  

l  Vertical: Applications are built on pre-existing, sharable sensors 
which are not bounded to any individual application. Adding new 
services does not require installing additional sensors.  

A Cloud-Sensor Data/Application 
Benchmark 



l  PlaceLab Dataset: 
l  Contains sensor data from 178 wired and wireless sensors for a 

2.5 month period when a couple stayed in the PlaceLab*.  
l  Sensors: location, humidity, switch, pressure, light, temperature, 

gas, current, flow sensor and body-worn accelerators.  

l  Horizontal Expansion: 
l  Manually created basic events based on household sensors 

(activity recognition, emergency detection, security, etc.).  
l  The same event set is used in every synthesized smart homes.  
l  Synthetic data generator:  

PlaceLab dataset and basic event set è�
Probability of event occurrence and event dynamics è�
Sensor data for all other synthesized smart homes 

l  Irregular events (e.g., house intrusion, fire alarm) 

A Cloud-Sensor Data/Application 
Benchmark 

*http://architecture.mit.edu/house_n/ 



l  Vertical Expansion: 
l  Randomly generated composite events using the basic event set, 

connected by randomly chosen operators.  
l  In addition, the TFM parameters are also modified in these 

synthesized events to manipulate different activeness of event 
evaluations.  

A Cloud-Sensor Data/Application 
Benchmark 

*http://architecture.mit.edu/house_n/ 



Dominant Resource in ACM 

l  Analyzing resource usage in ACM is relatively simple because it 
hosts mostly the cloud sensor services which are very simple and 
similar in their sizes and functionalities – no more than data 
transporters between cloud applications and edges with minimum 
data processing. 
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l  For memory resource, most of its consumption comes from the 
deployment of cloud sensor services. 

l  For processing resource, most of its consumption is attributed to 
the processing of the cloud sensor services of which we 
reasonably consider only the data transmitting and receiving as 
the major contributions while ignoring others (e.g., data 
processing and reading/writing cache). 



Dominant Resource in ACM 

l 
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Dominant Resource in ACM 
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Dominant Resource in CAR 

l  CARs are more processing intensive and less transmission intensive 
than ACMs. In addition, CARs communicate with ACMs (i.e., in-cloud 
instances) which are allocated much higher bandwidth capacity than 
outbound interfaces. Consequently, like ACM we exclude bandwidth 
from being a dominant resource of the CAR. 

l  With increasing event evaluation intervals, the dominant resource of the 
ACM changes from CPU to Memory 
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Dominant Resource in Cloud 
Components 

For both ACM and CAR, the dominant 
resources which determine the cloud dimension 
can be either processing or memory, but not 
bandwidth. Which one dominates the other 
depends on the overall sensor sampling rate in 
the cloud-sensor system and the maximal quota 
of resource usage allocated in the cloud 
instance (i.e., the auto-scaling threshold). 



Combined Optimizations 
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Concluding Remarks 

l  More focus is needed on High Velocity Big Data 
and its real-time application involving actuations 

l  Let us not run before we walk: we started off 
focusing mobile cloud: cloud-sensor systems 
represents a major class of applications in the 
Smart City, mobile devices certainly a major 
player.   

l  Let us marry optimization with architecture 
l  Let us search (or build) together for massive, 

truly city-scale datasets for better validation. 
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