
The 5th NSF Secure and Trustworthy Cyberspace Principal Investigator Meeting (2022 SaTC PI Meeting)
June 1-2, 2022 | Arlington, Virginia

Scaling Correct-by-Construction Code Generation for
Cryptography

PI Prof. Adam Chlipala, MIT

Add Your Logo and/or project info here
Award ID#:

Challenges

Maintaining all three of pleasant high-level
programming, performance, and
correctness/security

Extension to our C-code-generation
method must add support for functions,
loops, mutable data structures, and lookup
tables.

Equivalence checker for assembly code
should have minimal TCB.

Scientific Impact

Novel takes on the broad problems of
compiler verification and translation
validation

Tools for extracting Coq developments to
fast C code should be of interest in other
research in formal methods.

Solution [all with Coq proofs!]

Proofs of new high-level crypto algorithms
Tool to specialize these routines to fast C
code

Tool to validate compiled assembly code
against original algorithms

Real-world impact

Open-source tool already
adopted by all major browsers
& mobile platforms.

Goal is to broaden adoption
further by generating more of
crypto libraries and with
higher-performance code.

Education

Incorporate ideas in
graduate course on
program verification.

Project has already
involved many undergrads
and other students and will
involve more for the new
work.

Broader Participation

Teaching crypto
practitioners about formal
methods through
workshops like High
Assurance Cryptographic
Software and virtual
training sessions

https://github.com/mit-plv/fiat-crypto

Library of functional
programs (field

arithmetic)

Simple mathematical
specifications

proof

Parameters

Partial evaluator

proof

“C” code Assembly
Genetic
search

Equivalence
checker

proof
Prior work

Library of functional
programs (curve
arithmetic, etc.)

Derivation engine “C” code

Compilation hints

proof

proof
“C” program

proof

Compiler

proof
Linker

proof
Processor

proof

Algorithms Prime #s

HW Arches

Traditionally labor-intensive adaptation, with each combination taking
significant expert effort, prone to bugs.

Compiler

Domain: fast implementations of cryptographic primitives

Machine-
checked proof

(Coq)

C Rust

Go Java

x86 RISC-V

https://github.com/mit-plv/fiat-crypto

