Scaling Formal and Informal
(Less Formal?) Reasoning

Stephen Magill

Galois, Inc / Muse Dev, Inc.



Formal Analysis

* Sound functional correctness verification

e Relevant dimension of scale
* Proof creation

Proof checking

Proof update

Program update

Code usage



Effort Graph

Proof Creation Code Updates Proof Update Code Updates



Less Formal

Model Creation Code Updates Model Update Code Updates



Examples

* Functional Correctness Proofs for Amazon s2n

* Proofs for actively-developed cryptographic algorithms



Less Formal Scaling

* Non-exhaustive formal methods based testing (PKCS11)
* Symbolic bugfinding methods (Muse Dev)

* Dimensions of scale

 Lines of code (3.5B)

e Commits per day (10s of thousands)



Some Numbers

* Code size
e 2B lines of code (Google)
* 3.5B lines of code (unnamed financial sector company)

* Repository structure
* 11k repositories
* 1 repository with hundreds of projects

e Build time

e 26 hours build time (different unnamed financial sector company)
* 40 minutes when fully parallel!

* “Trying to get builds under 10 minutes”



Solutions

* Caching
* Build artifacts
* Analysis artifacts

* Relevant Build-oriented Tools: Artifactory, Bazel, Nexus
* Incremental analysis

* “Minimal viable analysis”



Inherent Sweet Spot for Each?

Are all practical industry-scale automated code analysis techniques
necessarily unsound, while human-guided semi-automated analysis is

the practical answer to cases where soundness is needed?



