
Scaling Formal and Informal 
(Less Formal?) Reasoning

Stephen Magill
Galois, Inc / Muse Dev, Inc.



Formal Analysis

• Sound functional correctness verification
• Relevant dimension of scale
• Proof creation
• Proof checking
• Proof update
• Program update
• Code usage



Effort Graph

Proof Creation Code Updates Proof Update Code Updates



Less Formal

Model Creation Code Updates Model Update Code Updates



Examples

• Functional Correctness Proofs for Amazon s2n

• Proofs for actively-developed cryptographic algorithms



Less Formal Scaling

• Non-exhaustive formal methods based testing (PKCS11)

• Symbolic bugfinding methods (Muse Dev)

• Dimensions of scale

• Lines of code (3.5B)

• Commits per day (10s of thousands)



Some Numbers

• Code size
• 2B lines of code (Google)
• 3.5B lines of code (unnamed financial sector company)

• Repository structure
• 11k repositories
• 1 repository with hundreds of projects

• Build time
• 26 hours build time (different unnamed financial sector company)

• 40 minutes when fully parallel!
• “Trying to get builds under 10 minutes”



Solutions

• Caching

• Build artifacts

• Analysis artifacts

• Relevant Build-oriented Tools: Artifactory, Bazel, Nexus

• Incremental analysis

• “Minimal viable analysis”



Inherent Sweet Spot for Each?

Are all practical industry-scale automated code analysis techniques 

necessarily unsound, while human-guided semi-automated analysis is 

the practical answer to cases where soundness is needed? 


