Scaling proof-based verifiable computation

Challenge:

 How can one machine check that another machine computed correctly? (applies to untrusted hardware, cloud computing, etc.)

Setting: chip design designer foundry (trusted) (untrusted)

Scientific Impact:

- Milestone in verifiable computation (first hardware design)
- Broadens verifiable computation to more classes of computations and larger computations

Solution:

- Apply and implement theory of probabilistic proofs; also known as verifiable computation
- Refine theory and adjust protocols to fit hardware

Response:

Broader Impact:

- Potential alternative to trusted foundry
- Undergraduate research involvement
- Software released
- Detailed tutorials in verifiable computation

Project number: CNS-1514422, NYU and UT Austin

Pls: Michael Walfish (mwalfish@cs.nyu.edu), Thomas Wies (wies@cs.nyu.edu), Andrew J. Blumberg (blumberg@math.utexas.edu)

Note: This slide depicts one thrust of a broader project.

