Secure Distributed Coded Computations for IoT : An Information Theoretic and Network Approach

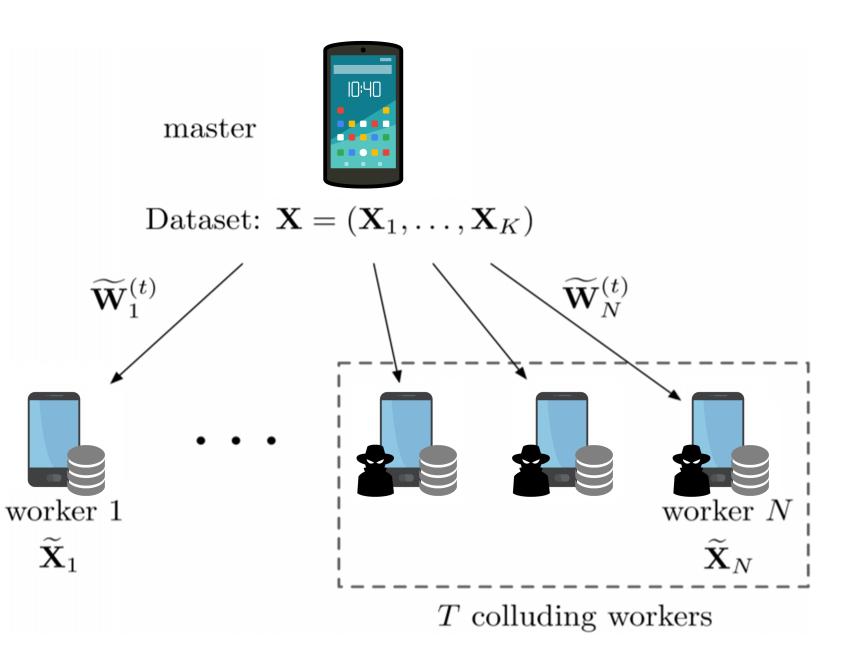
Pls: Yingying Chen¹, Salim El Rouayheb², Hulya Seferoglu³

^{1,2}Rutgers University, ³University of Illinois at Chicago ¹http://www.winlab.rutgers.edu/~yychen/, ²http://eceweb1.rutgers.edu/~csi/, ³http://nrl.ece.uic.edu/

Background

- > The number of mobile IoT devices is increasing and estimated to reach billions in the next few years.
- > Data collected by IoT devices will grow at exponential rates.
- > By 2022 about 75% of all data will need analysis and action computed by heterogenous networks with varying latency, data volume, bandwidth, cost, data sovereignty and compliance.
- > Distributed Computing: Tasks in an IoT device could be offloaded to other connected devices including sensors, mobile devices, and/or servers in close proximity

Challenges

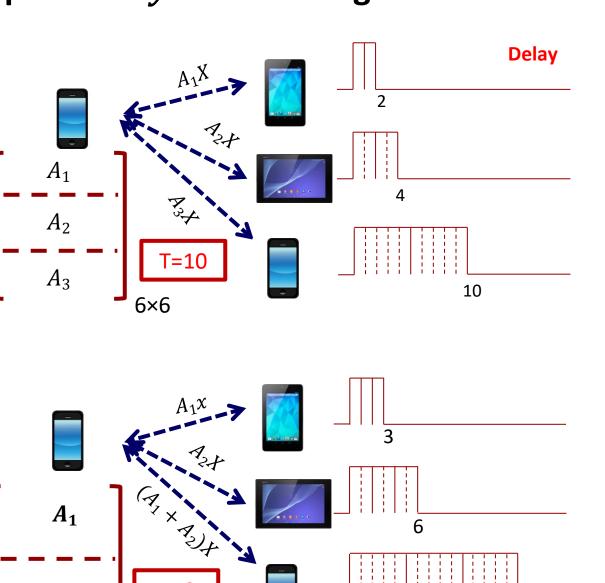

- Heterogeneity, resource time variance, and mobility: addressed in C3P
- Security: addressed in SC³
- Privacy: addressed in PRAC

Scientific Impact

Secure distributed coded computations are capable of providing information theoretic security across a scalable and heterogenous IoT network

 $\tilde{y}_2 = y_2 = A_2 x$

Secure Coded Cooperative Computation (SC³) (PRAC: Private and Rateless Adaptive Coded


Dynamic Heterogeneity-Aware Coded Cooperative Computation (C3P) at the Edge

Goal: Calculation of matrix multiplication y = Ax using 3 workers

- Trivial Approach:
- A is divided into 3 submatrices with equal size.
- Coded Computation:
- A is divided into 2 submatrices with equal size.
- 3 coded tasks are generated from the 2 submatrices
- Advantage of coded computation:
- Higher reliability
- Smaller delay
- Lower communication cost
- **C3P Approach:**
- Inspired by ARQ mechanism, master transmits packets to workers dynamically
- Fountain codes is used due to their rateless property, low encoding and decoding complexity, and low overhead Worker n Master

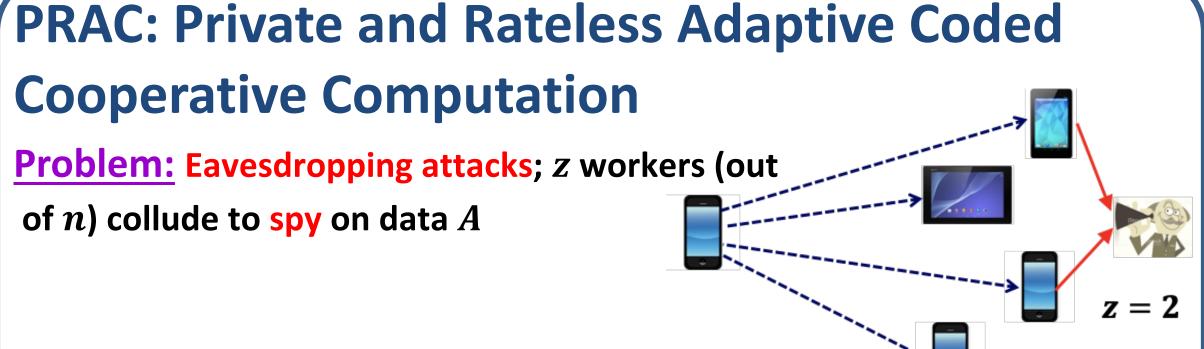
C3P Algorithm:

- Divide matrix *A* into *R* rows
- Apply Fountain codes on rows to create

Sending Packet $p_{n,i-1}$

 $Tx_{n,i-1}$

at the Heterogeneous Edge against Byzantine Attacks

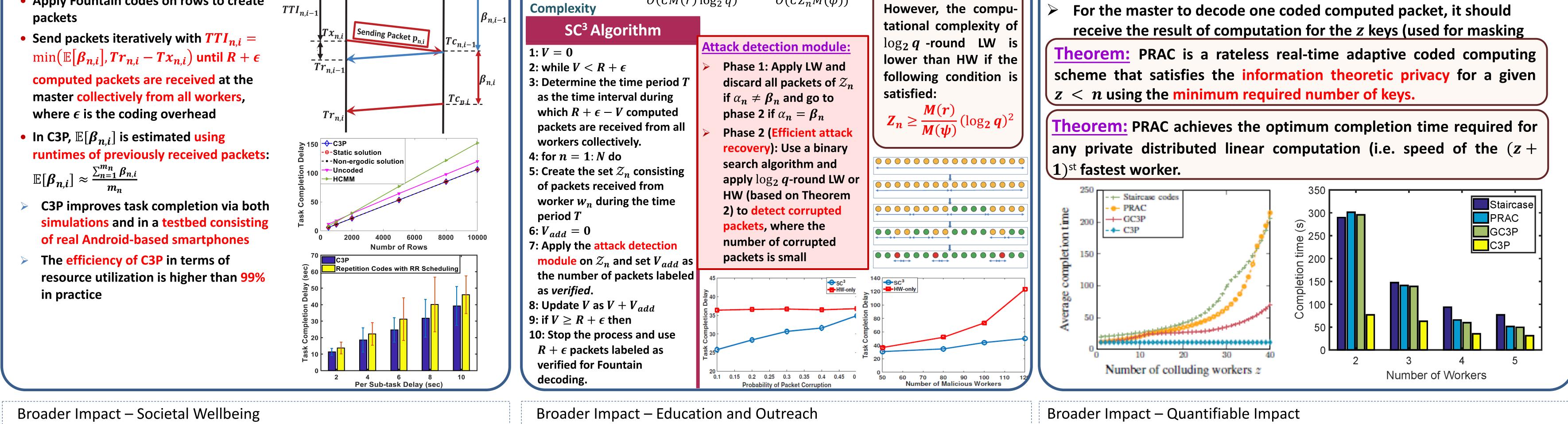

Problem: Byzantine attacks; workers can corrupt their offloaded tasks **Solution:** Use homomorphic hash function

to check the integrity of the received results from each worker in a computationally efficient way:

Homomorphic Hash Function: $h(a) \triangleq mod(g^{mod(a,q)}, r)$ \mathfrak{z} is a number in \mathbb{F}_r s.t. $g=b^{(r-1)/q}$ for \ldots Prime number randomly Prime number s.t. a random selection of $b \in \mathbb{F}_r$, $b \neq 1$ q|(r-1)selected from \mathbb{F}_{ϕ}

Theorem: If worker w_n is not malicious, *i.e.*, $\tilde{y}_{n\,i} = y_{n\,i}$, $\forall i$, then $\alpha_n = \beta_n$ for a nonzero intege at the master $\beta_n = mod \left(\prod_{j=1}^{C} h(x_j)^{mod(\sum_{i=1}^{Z_n} c_i p_{n,i,j},q)} \right)$ $\alpha_n = h \left(\sum_{i=1}^{Z_n} c_i \, \tilde{y}_{n,i} \right)^{\text{sent to } w_n}$ of matrix A Calculated using the received result from $\overline{w_n}$ Calculated using the local info^{1,1}

Light-Weight Integrity Check (LW)	Heavy-Weight Integrity Check (HW)	
$c_i \in U\{1, -1\}$	$c_i \in \mathbb{F}_q$	attack detection
$1 - \left(\frac{\tilde{Z}_n!}{2^{\tilde{Z}_n} \left((\tilde{Z}_n/2)!\right)^2}\right)$	$1-\frac{1}{q}$	probability of $\log_2 q$ - round LW is equal to the attack detection
$O(CM(r)\log_2 q)$	$O(CZ_nM(\phi))$	probability of HW. However, the compu-
	Integrity Check (LW) $c_i \in U\{1, -1\}$ $1 - \left(\frac{\tilde{Z}_n!}{2^{\tilde{Z}_n}((\tilde{Z}_n/2)!)^2}\right)$	Integrity Check (LW)Integrity Check (HW) $c_i \in U\{1, -1\}$ $c_i \in \mathbb{F}_q$ $1 - \left(\frac{\tilde{Z}_n!}{2^{\tilde{Z}_n}((\tilde{Z}_n/2)!)^2}\right)$ $1 - \frac{1}{q}$


Solution: Mask data with coded

keys and send the masked data along with keys dynamically to the workers:

Time	Worker 1	Worker 2	Worker 3	Worker 4
1	<i>R</i> _{1,2}	<i>R</i> _{1,1}	$A_1 + A_2 + R_{1,1} + R_{1,2}$	$A_3 + A_4 + R_{1,1} + 2R_{1,2}$
2				R _{2,1}
3	<i>R</i> _{2,2}			
4		$A_1 + A_3 + R_{2,1} + R_{2,2}$	$A_1 + A_5 + R_{2,1} + 2R_{2,2}$	
5	<i>R</i> _{3,1}	R _{3,2}		$A_3 + A_5 + R_{3,1} + R_{3,2}$

PRAC Outline:

- PRAC uses C3P for offloading packets to workers
- For each round t, the master generates z random keys R = $[R_{t,1}, R_{t,2}, \dots, R_{t,z}]$
- For each worker *n* at round *t*, $R_{t,i}$ is transmitted if $j \le z$ and a fountain coded packet masked with a coded key (e.g.
- $A_1 + A_5 + R_{2,1} + 2R_{2,2}$) is transmitted if j > z, where j is the number of workers with the current round of t

The obtained results on secure coded computations have the potential to transform the design of next-generation IoT networks where security must be a prime requirement rather than an afterthought

The validation component and the collaboration with AT&T Labs will enable fast technology transfer. The educational plan will include: (i) integration of proposed research in course development; (ii) guided tours for undergraduate students to Winlab at Rutgers with possible summer internships; and (iii) workshop organization

The proposed research could facilitate new designs of next-generation IoT networks and applications, ranging from health monitoring, to smart cities and driverless cars, to name a few

The 4th NSF Secure and Trustworthy Cyberspace Principal Investigator Meeting

October 28-29, 2019 | Alexandria, Virginia