

CPS: Breakthrough:

Securing Smart Grid by Understanding Communications Infrastructure Dependencies

(Sept 1, 2015 – Aug 31, 2018)

CNS-1544904
Krishna Kant
Arvind Srinivasan
Temple University

CNS-1545037

Sajal K. Das

Simone Silvest

MISSOURI

Mariesa Crow

Missouri Univ. of Science & Technology

Overview and Goals

Objectives

- Ensuring integrity and robustness of Smart Grid (SG) communications.
- Detecting and mitigating attacks and failures.

<u>Challenges:</u> Interdependency, Robustness, Cyber-Physical, Big Data

Specific Tasks

- Characterize dependence between SG and communication systems.
- Make SG communication protocol and state estimation more robust.
- Build models for compromised node and attack detection.
- Mitigate propagation of impacts of attacks and cascaded failures.

Validate models with experimentation on a micro-grid test-bed.

Thrust I

- ➤ Making Smart Grid communication protocols and state estimation more robust
 - Designing low latency integrity mechanism
 - Silent state perturbation and its mitigation

Smart Grid (SG) Structure

Applications

- Power flow monitoring
- Power conditioning
- Protection
- Degradation monitoring

Comm. Standards

- IEC 61850 (2004):
 - Standard for substation automation function; includes a standard communication protocol.
- IEEE C37.118 (2005), updated 2011
 - Synchrophasor measurement & test specs, PMU data formats
- ➤ IEC TR 61850-90-5 (2012):
 - Data exchange between PMUs, PDCs, Wide Area Monitoring, Protection, and Control (WAMPAC), and control center applications.

Communications & Security in IEC61850

- > Several integrity schemes, indicated by an enumerated value.
 - Value 0: Intended for protection. Low latency → No encryption/HMAC.
 - Others: May not be implemented in practice

Allowed values for MAC (msg auth code) signature value calculations

Enum value	HMAC algorithm	No. of bits	Designation
0	None	None	MAC-None
1	SHA-256	80	HMAC-SHA256-80
2	SHA-256	128	HMAC-SHA256-128
3	SHA-256	256	HMAC-SHA256-256
4	AES-GMAC	64	AES-GMAC-64
5	AES-GMAC	128	AES-GMAC-128

Modules in green defined in 2012 standard, currently not deployed

Integrity of Protection Messages

Challenges

- Most recent μP in substations use ARM Cortex-M cores
 - Cannot meet 4ms requirement for hash based integrity checking or encryption
- Injection/corruption of protection message can cause havoc
- Need a very light weight but secure mechanism

Embedded LPC11U24 at 48 MHz frequency

Our Approach

Permutation only encryption

Basic Algorithm

- Generate 16-bit Fletcher checksum
- Generate a set of random numbers based on a seed (= Key)
- Sort the numbers & use them as offsets for checksum bits
- Hide checksum bits in the message

Key management

- Initially communicated to all receivers securely.
- Salted with status number (a 32-bit counter) every 「log2(8N + 16) ¬ − 1 transmissions
 - *N* = Min number of plaintext bytes
- Key renegotiated when counter rolls over.

Security Analysis

- Brute-force attacks: 96 bit security
- Ciphertext-only attacks
 - Checksum recalculation is more cumbersome than brute-forcing.
- Known/chosen plaintext attacks
 - Key salting ensures security
- Related key attacks
 - Secure from off-path attacks
 - Key disclosed from permutation indices.
 - Success probability before the key changes is negligible.

Performance Analysis

- > Real implementation on a 48 MHz ARM cortex μP
- Comparison against other high speed approaches
- > Results
 - ✓ Fastest about 3x of next best algorithm
 - ✓ Only one that can satisfy the requirement of 4 ms.
 - ✓ Actual latency of 2.5 ms
 - ✓ Useful in other applications also.

Algorithm	Speed (kilobytes per second)
Proposed method	424
MD5	147
ChaCha20-Poly1305	94
AES-128-CCM	70
AES-128-EAX	70
AES-128-GCM	41

Silent State Perturbation

> Attack

- Perturb measurements w/o triggering bad data detection
- Repeat attack to silently amplify perturbation
 - Only some state variables can be perturbed; choose ones that maximize grid disturbance

Mechanisms

- Prior work assuming Jacobian matrix (H) is fully known
- New mechanisms based on partial knowledge of H matrix

Attack mitigation

Countermeasures against silent perturbation attacks

Thrust II

➤ Attack detection and mitigation in advanced metering infrastructure (AMI)

Attack models and node

compromises

False data injection

Trust model

Multi-Level CPS Security Framework

Advanced Metering Infrastructure (AMI) Micro-Grid

11/3/16

Securing the Smart Grid

- Integrity violation of smart metering data in transit
- State perturbation and false data injection
- AMI attacks
- Billing system vulnerabilities
- Power system side attacks

Household Appliances

Smart Meter Data Falsification

Organized, Persistent Adversaries:

- Circumvent cryptographic defense
- Compromise a large # of meters
- Attacks persist and evolve
- Mask easy consistency check
- Knowledge of business and revenue models

Challenges:

- Consumption exhibits inherent fluctuations
- Distinguishing between legitimate and malicious changes
- Large # of Compromised Nodes with Smaller Margin of False Data
- Various Falsification Types

Attack Models:

- Additive: Reports greater than actual power consumption
- Deductive: Reports lesser than actual power consumption
- Camouflage: Balance additive & deductive attacks from different meters

 Conflict: Unbalanced additive and deductive attacks from multiple uncoordinated adversaries

Proposed Approach

Legitimate and Malicious Changes

- > Transform the observed data into a Gaussian mixture
- ➤ A light weight statistical indicator for anomalies: Ratio of Harmonic Mean (HM) to Arithmetic Mean (AM) of the Gaussian

HM and AM of mixture data change due to legitimate weather and other contextual factors

HM vs. AM: Legitimate Data

HM vs. AM: Under Attacks

Intuition: Track ratio of HM to AM

Anomaly Detection

- A drop in HM to AM ratio is an indication of organized falsification
- The ratio is maintained as forgetting and cumulative moving averages
- Property holds for all attack types and higher fraction of compromised nodes

Performance Evaluation

- Used real data set from PECAN Street Project (SmartGridGov)
- Emulated attacks on real data fed to a virtual simulated AMI
- Observed clear difference between compromised & non-compromised nodes
- Results are better due to robustness of statistical measures in various steps
- Works for isolated attacks

Summary

Objectives:

- Characterize <u>interdependence</u>
 between Smart Grid & comm systems
- Make protocols & state estimation more robust
- Detect impacts (failures and attacks) and prevent cascades.
- Build models for attack mitigation.
- Validate with real test-bed.

Research Methodologies Scientific Impact: Reconfiguration Intentional Islanding Strategies How do project Stochastic decision Against Cascading processes contributions generalize **Failures** Failure prediction models to other CPS research? Software attestation **Trust-based Attack Detection Power flow** inconsistency detection Cloud-based state estimation **Secure State** Steganography-based **Estimation Mitigation of Cascading Failures** tamper detection **Attack Detection and Isolation** Vulnerability assessment **Hardening Smart Improved System Robustness & Control Analysis of protocol Grid Comm. Protocols** anomalies **Expected Results**

Solution Methodologies:

- Integrity mechanism for protection & state estimation
- IEC81650 Protocol hardening
- Game theory and trust models for attack detection, failure spreading
- Situation-aware models for threat monitoring, analytics, decision control

Broader Impacts:

- Influencing the standards.
- Multi-disciplinary security training in CPS.
- Experiential learning in reallife micro-grid facility.
- Outreach, demo and research showcase

Micro-grid at Missouri S&T

Ongoing Research

- Integrity protection
 - Key management protocols
- Robust state estimation
 - Silent state perturbation mechanisms with partial knowledge of network parameters
 - Mitigation mechanisms
- Vulnerability analysis of GOOSE protocol and hardening
- PMU data falsification
 - Identify compromised meters
 - Formalize supervised and unsupervised learning techniques
- Cascade failures
 - Electrical Topology based prediction of time to cascade failures
 - Topology aware hardening of components against failure or attacks