Securing Manufacturing Systems

Sixth Annual Cyber-Physical Systems – PI's Meeting

Dr. Jules White Assistant Professor of Computer Science Vanderbilt University

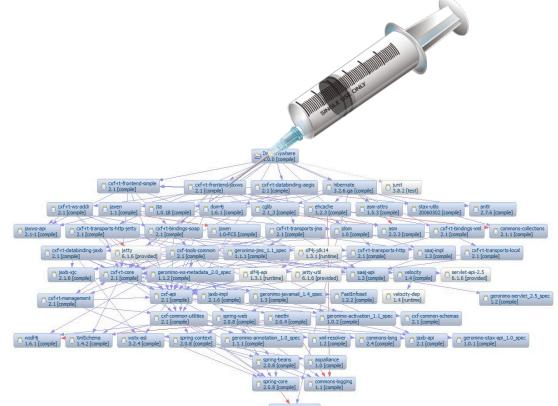
Dr. Jaime Camelio Rolls-Royce Commonwealth Professor for Advanced Manufacturing Virginia Tech

Motivation

Modeling & Design Automation Critical in Advance Systems

Design solution spaces are so complex it is impossible or extremely complex for humans to find solutions that meet desired constraints

- Advanced manufacturing systems
 - Tool path code production from 3D designs, finite element analysis
- Synthetic biology
 - o Oligo design
- Vehicle design (DARPA AVM)
- Oil & Gas exploration



Software Systems Increasingly Under Attack

Attacks target the *software construction process* as well as deployed software

- Dilletante injects vulnerabilities into Java libraries downloaded with most common build tools
- Ken Thompson compiler virus injects backdoor into all software

If you can't compromise it, inject flaws into its construction

VANDERBILT VUNIVERSITY

Invent the Future

Toyota Settlement Over Acceleration Problems to Top \$1 Billion - NBC

How do we know that the Toyota acceleration problem wasn't a design flaw injected by an attacker?

Defect still unclear:

- "a single bit flip which can be caused by cosmic rays could cause unintended acceleration "-NASA
- Possible mechanical design flaw caused sticking

Red Team Tasks

Example TCP Stream Analysis

- 1. Objet data included three main configuration directories
 - 1. Configs
 - 2. Modes
 - 3. ServiceTools

Print Start Config

2. Each contains config files:

Head Heater Config

4000=20

2900=30

3000=28.1

2800=31.2

2700=33.5

2600 = 34.6

2500=35.2

2400 = 36.6

2300=38.4

2200 = 40.4

2100 = 41.6

2000 = 43.1

1

2

3

4

5

6

7

8

9

10

11

12

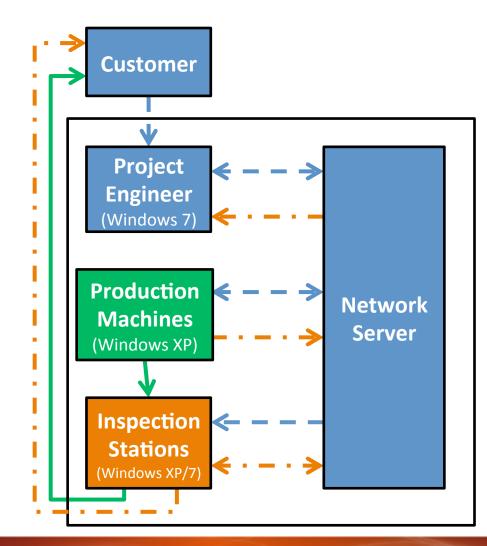
- 1 ActivationOverShoot=0
 2 ActiveMarginInPercent=10
- ActiveMargininPercent
 ActiveTanks=1,3,2
- 4 AdvanceFireTest=0
- 5 AdvanceFire_1200DPI=9
- 6 AllowEmulationDelay=0
- 7 AmbientFanControlByPass=1
- 8 AmbientLog=1
- 9 AmbientTemperatureByPass=0
- 10 AmbientTemperatureFanControl=383
- 11 AtLeastDelayTimeBetweenLayers=0
- 12 AutoPrintCurrentZLocation=0
- 13 BumperBypass=0
- 14 BumperCalibrationPermissiveArray=

VANDERBILT VUNIVERSITY

output/zip » ls tmp-0000001.zip Configs Modes ServiceTools

output/zip » ls tmp-0000001.zip/Configs AmbientTemperature.txt q2rt.cfg follow - up log.txt q2rt.cfg.bak HeadHeater.txt q2rt.ref Maintenance.bak QSHR.bak Maintenance.dat QSHR.tmp Print End Params.cfg recover.bak Print End Params.ref recover.bin Print Start Params.cfg SensorVacuum.txt Print Start Params.ref Tray.txt

output/zip » cat tmp-00000001.zip/Configs/ AmbientTemperature.txt 335=3.201 400=56.468 460=105.63


Objet Configuration Data Can be Detected and Modified

WirginiaTech

Is this a real problem? AM Production Example

Additive Manufacturing Process Evaluation

VANDERBILT VUNIVERSITY

VirginiaTech

CPSS – **Pilot Approach**

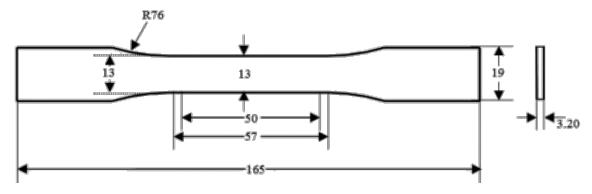
- Focus on attacking the most widely used open standards (i.e. CNC, CMM, STL, P-Code)
- Attack a common, familiar, well characterized test part (i.e. dogbone)
 Difficult to hide attack effects
- Observe the behavior of designers unknowingly subjected to cyber physical system attack

Invent the Future[®]

CPPSS – Pilot Teams

Two Distinct Thrusts

- Additive Manufacturing Team (Williams)
 - Insert undetectable active electronics into the manufacturing process
 - Strategically insert microscopic voids to cause lifecycle failures in additive parts
- Subtractive Manufacturing Team (Camelio)
 - Teams of mechanical designers attempt to design, build and test simple "dogbone" test article while Red Team attacks machine files and measurement devices


Red Team (White)

- Create malicious attack delivery mechanisms
 - Thumb drives, network, wireless attacks
 - Deliver mechanisms not detectable by cyber security techniques
- Analyze VT AM networks and intercept sensitive design data and machine control data
- Cyber-physical defense approaches and best practices

Subtractive Manufacturing Standard Test Part

- Dog-Bone Tensile Test Specimen
 - Used to Determine Material Properties
 - **o** Easy to Design, Machine, Inspect, & Test
 - But VERY difficult to attack without detection
 - **o** Known Performance
 - All Necessary Equipment is Available (at one location)
 - Material is Easy to Obtain
 - Fits Well with Manufacturing Processes (ISE-2204)

Subtractive Manufacturing Phase 1 Organization

- Two Teams
 - Blue_Team
 - Engineering Students (operating under an IRB)
 - Design, Manufacture, Inspect, and Test Part
 - Works Directly with Engineering Graduate Student
 - Ability to Detect Abnormalities is Continuously Monitored

Invent the Future[®]

- Unaware of the Red Team
- \circ Red_Team
 - Develops Malicious Software
 - Works Directly with Engineering Graduate Student

Engineering Graduate Student

- Guides Blue Team Through Product Development
- Monitors Blue Team Behavior
- Helps Identify Vulnerabilities
- Implements Malicious Software

Subtractive Manufacturing Tool Path Attack

- Seven independent Student Teams design Standard Test Part, create P-code
- Machine tool paths are sent to the mill controller via ASCII files
- Red Team swaps ASCII files to create incorrect tool paths
 - Insertion of thumb drive with design file detected, file on thumb drive remains unmodified but file on computer is altered on the fly as it is read in
- Parameters modified
 - One line changes thickness by .02"
 - 20 lines (of 135) reduce contour by .05"
 - o 20% performance decrease, same file length
- Incorrect part is machined and tested

% :05000 N2G70G90G40G49G17G80G53G0 N4G1X0.Y0.S3819M03 N5G43H1Z1.0T2 N6M08 N7Z0.1 N8G01Z-1.0F22.91 N9G41D1Y-5.0F45.83 N10X4.0 N11G03X5.0Y-4.0I0.J1.0 N12G01Y4.0 N13G03X4.0Y5.0I-1.0J0. N14G01X-4.0 N15G03X-5.0Y4.0I0.J-1.0 N16G01Y-4.0 N17G03X-4.0Y-5.011.0.J0. N18G01X0. N19G40Y0 N20G00Z1.0 N21G91G28Z0M09 N22G00X0.Y0. N23M06 N24G90G00G1X-0.036Y0.536S4965M03 N25G43H2Z1.0T1

Invent the Future®

Subtractive Manufacturing

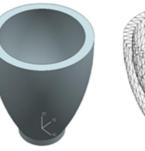
Experimental Results – Blue Team Reactions

- Teams 1-3
 - Did not notice the 20% change in performance even when prompted with calipers
- Teams 4-7
 - When instructed to measure the part, these teams detected some anomaly
 - Team 4 finds file abnormality, diagnosis as "weird" computer problem in file transfer
 - Team 5 finds file abnormality, diagnosis as "weird" computer problem where "old file never left"
 - Team 6 finds file abnormality, wrongly guesses the problem is a part design problem in CAD process – not validated
 - Team 7 has no clue after measuring part, unidentifiable error

Subtractive Manufacturing Measurement Attack Result

PNT4	=FEAT/POIN THEO/1.5,-0.24 ACTL/1.5,-0.24 CONSTR/POIN ASSIGN/V1 = 0	415,0.1,0,0,1 15,0.1,0,0,1 NT,OFFSET,, ²)	1.5,-0.24	415,0.1								
CS1	ASSIGN/V2 = 0 S1 =SCRIPT/FILENAME= C:\PCDMISW\SCRIPTS\DOG_BONE.BAS FUNCTION/Main,SHOW=YES,, STARTSCRIPT/ ENDSCRIPT/ ASSIGN/PNT1.X = PNT3.X+V1 ASSIGN/PNT1.Y = PNT3.Y ASSIGN/PNT1.Z = PNT3.Z ASSIGN/PNT2.X = PNT4.X+V2 ASSIGN/PNT2.Y = PNT4.Y ASSIGN/PNT2.Z = PNT4.Z											
<mark>⊬≯</mark> II	N DIM WIDTH=	3D DISTANCE	FROM	POINT	PNT3 TO	POINT P	NT1 TRUE					
AX	NOMINAL	+TOL	-TOL	ME	EAS	DEV	OUTT	OL				
M	0.5000	0.0100	0.010	0	0.4982	-0.00:	18 0.	0000				
						-						
<mark>⊬≯</mark> II		3D DISTANCE		POINT		POINT P	NT4 TRUE					
1 77	ATO SETTING 1	1 CTROT	mot		7.7.00	T. T. T. T.	O TTODO	0.T				

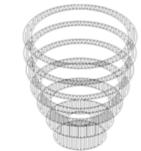
NI 🙌	DIM THICK=	3D DISTANC	E FROM H	POINT PNT2 TO	D POINT PNT4	TRUE
AX	NOMINAL	+TOL	-TOL	MEAS	DEV	OUTTOL
M	0.2000	0.0100	0.0100	0.1966	-0.0034	0.0000


Sub Main **Dim App As Object** Set App = CreateObject ("PCDLRN.Application") **Dim Part As Object** Set Part = App.ActivePartProgram Dim Var1 As Object Set Var1 = Part.GetVariableValue ("V1") Dim Var2 As Object Set Var2 = Part.GetVariableValue ("V2") Dim T As Double **Dim W As Double** TMean=0.2 TStd=TMean*0.01 WMean=0.5 WStd=WMean*.01 X1=Rnd()X2=Rnd()Y1=Sqr(-1*Log(X1))*Cos(2*3.14159*X2) Y2=Sqr(-1*Log(X1))*Sin(2*3.14159*X2) T=Y1*TStd+TMean W=Y2*WStd+WMean Var1.DoubleValue= Var1.DoubleValue+ W Var2.DoubleValue= Var2.DoubleValue+ T Part.SetVariableValue "V1", Var1 Part.SetVariableValue "V2", Var2 End Sub

Attack Causes Reporting of Statistically Varied, Within Tolerance, But Erroneous Measurement Values

The AM Digital Thread

- File interception / augmentation
- Bring part out of specification
- Add unwanted features



3D Cad Model

Slicing Software

Layer Slices &

Tool Path

3D

Printer

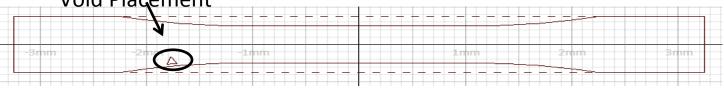
3D Object

VirginiaTech

Invent the Future®

Additive Manufacturing Phase 1 Attack Vectors

- STL Attack
 - Intercept file and rewrite to include:
 - Small random voids to reduce structural integrity
 - Large voids for component embedding
- Build Attack
 - Simulate build pause and embedding procedure
 - Following "large void" STL attack, operator embeds component and then resumes build


Stratasys Dimension 3-D printer

rginia

Invent the Future®

Additive – STL Attack: Volume Analysis

- Determine where to place a void
 - Stress concentration areas
 - "Virus" automatically searches for densest mesh areas (most likely to be stress concentration points)
 - o Inside/outside

Ray tracing used to determine if a point is within the mesh

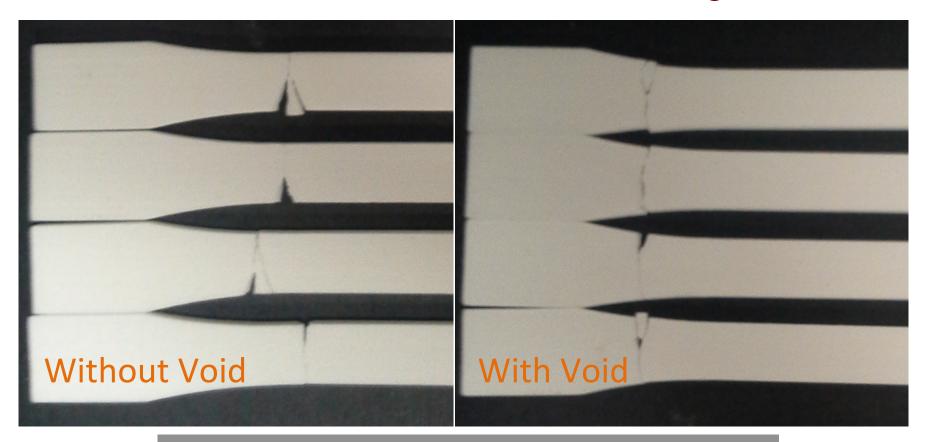
- Algorithm Updates
 - $\circ~$ First algorithm generated long slender voids
 - Checking angles of triangle resulted in better voids
 - Tetrahedron void shape adds only four triangles to a file (minimal file size impact and appears as just another of thousands of triangles)

nvent the Future

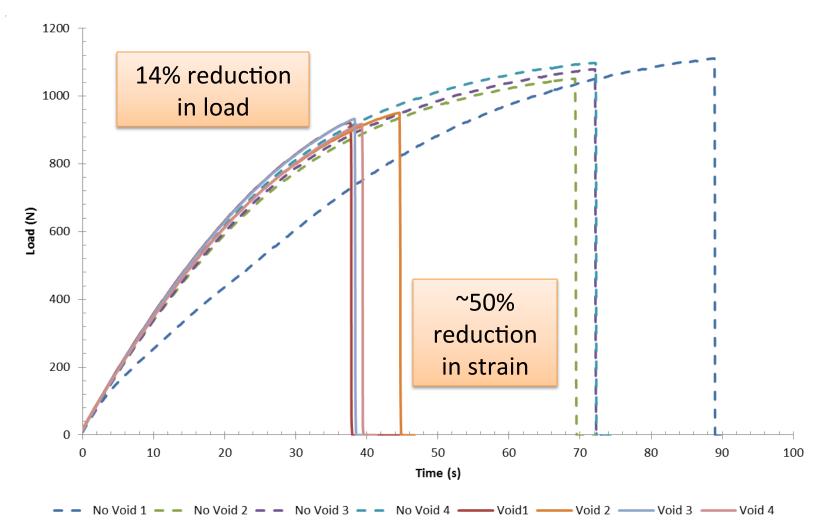
Additive Manufacturing Phase 1 STL Attack Results

STL exploit successfully automatically attacked STL files to insert voids

Build paused halfway to show void



Finished Part


Additive Manufacturing Phase 1 STL Attack Results – Yield Testing

Fractures occur at the void locations

Effects on Part Strength

*J*irginiaTech

Invent the Future®

Additive Build Attack Embedding Process

- Cavity attenuation test fixtures fabricated with Objet VeroWhitePlus on a Connex 350. UV cured photopolymer
- Functioning tags (shadow in lower photo) embedded with Stratasys Dimension SST 768
- Phase 1 Achievements
 - Build successfully halted and resumed
 - Build process did not harm tag functionality
 - Material provided no measureable attenuation to RFID signals

Signal Attenuation Test Fixture

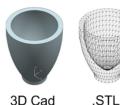
Functioning Embedded RFID tag (horizontal cavity)

Current Research

Decision Theory & Vulnerability Discovery

- A Game Theory Approach to Cyber-Physical Security
 - Motivate manufacturers to secure their production processes from cyber-physical attacks using game theory.
- Cyber-Physical Vulnerability Assessment Tool
 - Create a tool that autonomously identifies cyber-physical vulnerabilities within all levels of a manufacturing organization.

Cyber-Physical Vulnerability Database


 Create a database of cyber-physical vulnerabilities seen commonly in industry, and provide a roadmap to recovery.

Invent the Future®

AM Current Research

Process Chain Risk Assessment

File

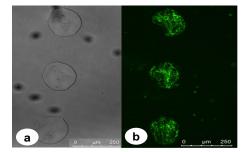
Model

Slicing

Software

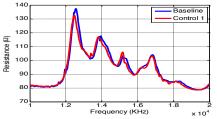
Layer Slices &

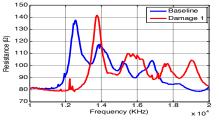
Tool Path

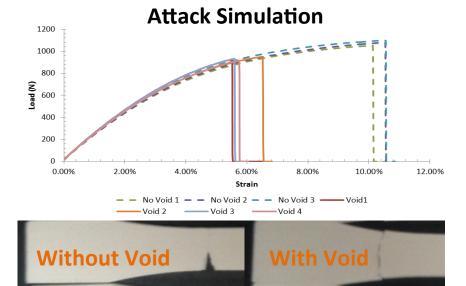


3D

Printer


3D Object


Physical Security Measures



Piezoelectric Sensing and Monitoring

*l*irginiaTech

Invent the Future®

Contact Info

Dr. Jaime Camelio

Virginia Tech

Email: jcamelio@vt.edu

Dr. Jules White

Vanderbilt University

Email: jules@dre.vanderbilt.edu

*lirginia*Tech

Invent the Future[®]

