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Fault-tolerant Control Schemes
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Besulots show the traffic flow rates are greatly impacted by network Design Algorithm Desiqn Approach
Impairment. 1. Automotive system (Platoon) integrated with fault
Mitigation Strategies Case C1 conditions and countermeasures is simulated.

ka = fou(kp)
kp S [’]—€P01 Y kp(n]

2. Simulation information is collected (fuel performance & no
crashes).
3. Game between fault conditions and fault-tolerant control

g . Case (2 A A kR schemes is established. Payoff matrix is prepared.
Network RE/IabI/Ity Metric i = Joalky) 4. Z-testis conducted. Dominance strategies are identified.

Reliability metric of the communication network is defined as the kp € (Bpesy Kpes ]
ratio of packets that were successfully received to the total
number of packets that were expected.

The headway time value h impacts the safe and efficient operation
of a CACC platoon. We define an adaptive h value that adapts to
network reliability.

5. Solution of the game is identified from dominance
strategies.
6. Solution is used to improve controller robustness.

Numerical Results
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rotat with proposed approach.

Dynamic headway assignment

Adapting headway values to network reliability yields improved
traffic flow under different network conditions.

Benefits

Scientific Impacts

 Potential improvement in traffic conditions, vehicle and
personal safety, and energy consumption.

* Collision avoidance.

 More security is valuable for car makers and auto insurances.

Broader Impacts

Platoon of 11 vehicles with DoS attack: 5 drops / 1 successful.
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