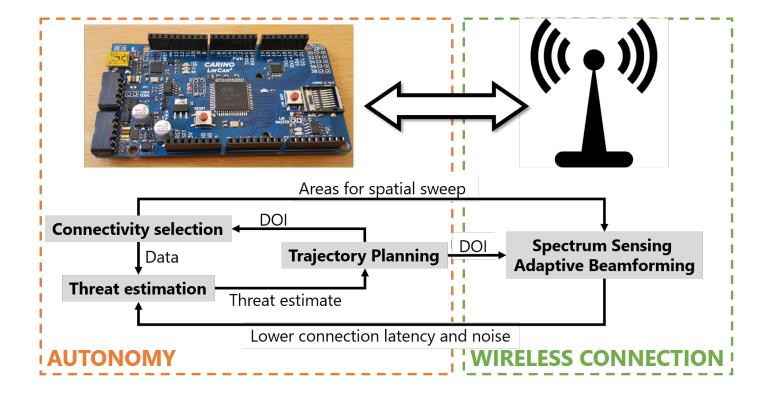
CPS: Breakthrough: Selective Listening: Control for Connected Autonomous Vehicles in Data-Rich Environments

Raghvendra V. Cowlagi Aerospace Engineering Program


Anticipated Outcome

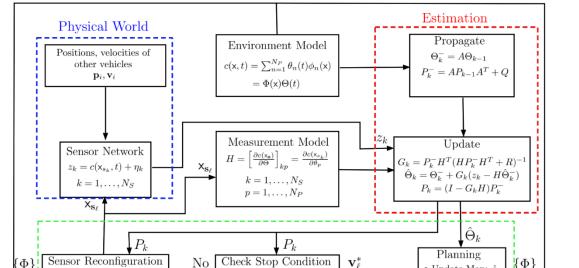
Alexander Wyglinski Dept. Electrical & Computer Engineering

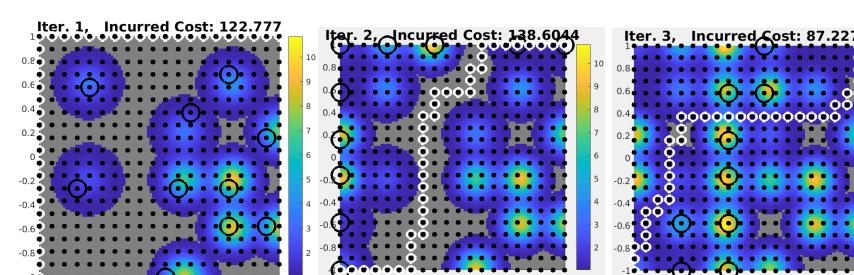
Worcester Polytechnic Institute, Worcester MA

Research Objectives

The goal of this project is to study how estimation and control algorithms in connected autonomous cars affect – and are affected by – software-defined radio communications in spectrum-scarce, data-rich environments.

Findings

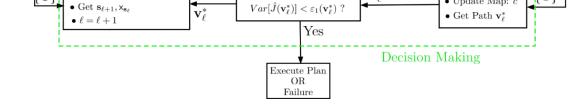

Interactive path planning and sensor placement in an unknown spatiotemporal field


Performance with large

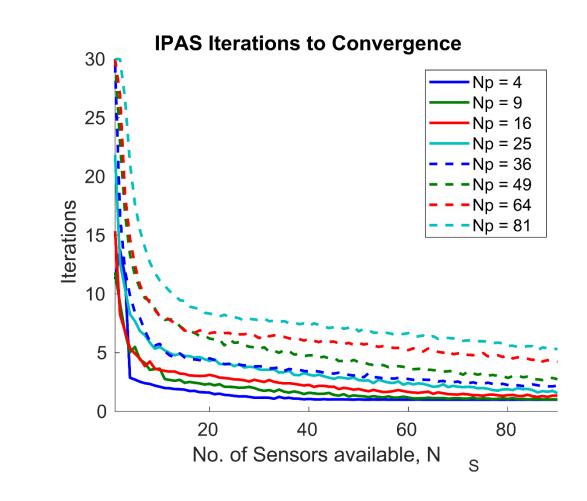
çõ

• • • • • • • • • • **. . .**

• • • • • • • <mark>• • • • •</mark> •

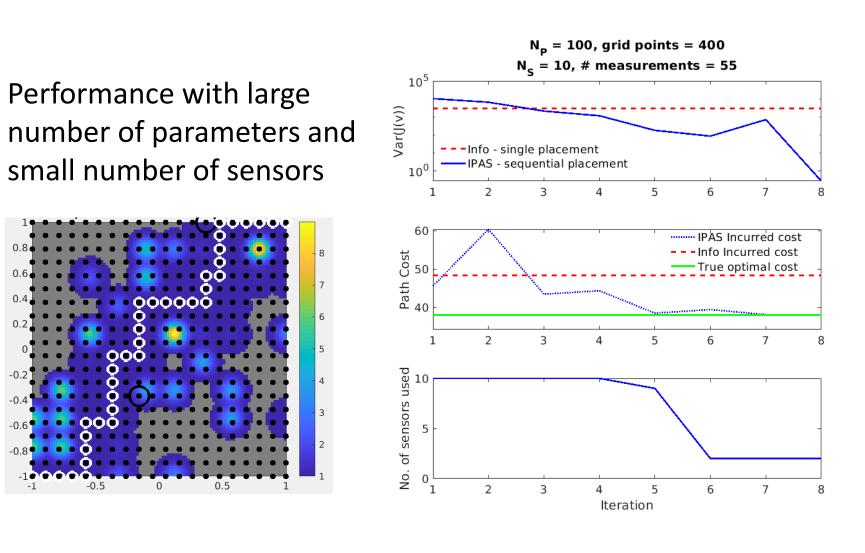

Objective

Scientific objectives – To characterize the following:						
V2V connectivity requirements.	Size and shape of a minimal region within which V2V connectivity is required to guarantee safety.					
Performance limitations due to latencies in connections.	Maximum permissible latencies in connections to remain within desired safety risk levels.					
Safety guarantees vis-à-vis uncertainties about other vehicles and pedestrians.	Dependence of safety risk level on the uncertainty in location and velocity of other vehicles.					
Engineering objectives – To develop algorithms for the follo	wing:					
Connectivity selection and control-driven cognitive radio comms.	Minimal set of vehicles and infrastructure devices to commence V2V and V2I connections, respectively. Reliable radio comms. via spatial wireless filtering.					
Analyze and quantify possibility of potential collisions.	Spatiotemporal field signifying the threat of collisions; uncertainty quantification of this field given uncertainties in connection latencies and noise.					
Fast trajectory planning.	Trajectory with minimum threat exposure.					
Experimental objective – Demonstrate principal features of scientific and engineering outcomes	Connected autonomous golf cart with onboard implementations of aforesaid algorithms; simulated traffic conditions and potential collision environments.					

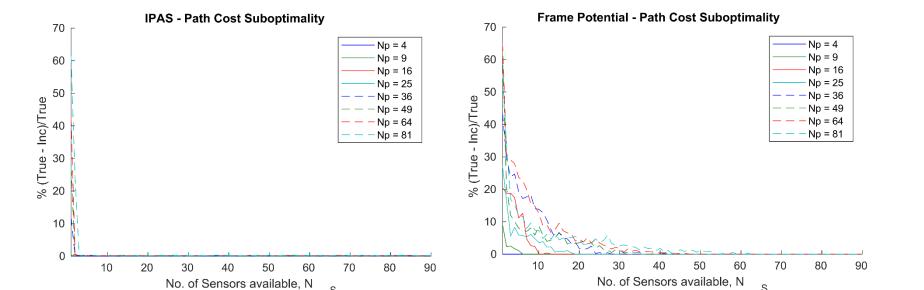

Technical Approach

Connectivity selection and collision threat estimation

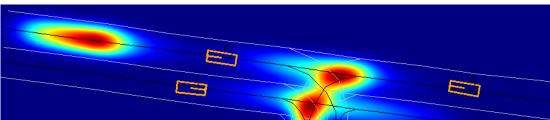
• *Threat field:* spatiotemporal scalar field indicating possibility of collisions with other vehicles. • Finitely parametrized using spatial basis functions $c(t,\mathbf{p})\approx\sum_{n=0}^{P}q_n(t)\Psi_n(\mathbf{p})$



- Place sensors where most relevant to path planning; bootstrapping algorithm • Stopping criterion: path cost variance reduces below specified threshold • V2V links are "sensors"
- Proven to converge and obtain near-optimal solutions for path-planning • Numerical simulation results below



• -• •	-0.5	••••	0.5	1	Ų.	-0.5	0	0.5	1	-1	0.5		0.5	1
	.4, In	curred Co	st: 71.27	72	Iter. 5	, Incu	rred Cos	st: 63.1	573		ie optimal	path cost =	63.0912	
8 • •			00	- 10	0.8	00000	00000		- 10	0.8	00000	00000	0000	- 10
6 .			. <u>.</u>	• · ·	0.6		• • • •		9	0.6	•••	•		9
4	•••••	•••••	00	- 8	0.4				8	0.4				8
2	\odot		0	- 7	0.2				- 7	0.2	••••			7
0	•••••	•••••		6	0				6					- 6
2	•••••		Ş. . ,	- 5	-0.2			🛤	5	-0.2				
4	•••••		8	- 4	-0.4				- 4	-0.4				4
6 • •		00		- 3	-0.6				- 3	-0.8				
8 • •	0000	0000		2	-0.800				2	-1				
1• • -1	-0.5	0	0.5	1	-10-0-0-0	-0.5	• • • • •	0.5		-1	-0.5	0	0.5	1


Iterations of sensor placement (black circles) and optimal path planning (white circles); compare with ground truth optimal (right-bottom)

The proposed iterative sensor placement approach enables the path planner to find optimal solutions with fewer measurements

Snapshot of "threat" field in a traffic situation (T-junction)

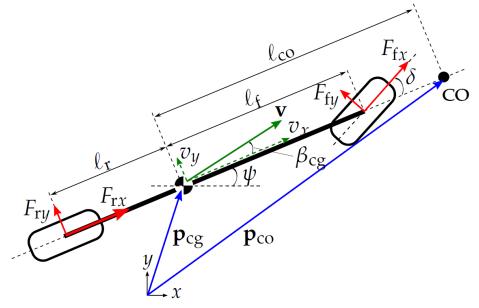
- Construct model of threat field evolution using models of other vehicles' motion and ego vehicle's planned trajectory.
- Use data from V2V comms and from ego vehicle's onboard sensors to provide indirect measurements of threat.
- Construct Bayesian estimator to estimate threat field parameters q_n .

$\dot{\vec{q}} = F(t, \vec{q}; \vec{w})$ $\dot{\mathbf{p}}_{i}(t) = f_{i}(\mathbf{p}_{i}(t), u_{i}(t))$

• Select and rank "best" data nodes.

 $|\phi_{i,\text{gauss}}(t,\mathbf{p};\mathbf{p}_i) := \frac{1}{1+e^{(t-T)}}$

- Select data nodes that can be most informative in reducing ego vehicle's safety risk level.
- Possible method: rank data nodes according to sensitivity of trace of Fisher information matrix.


 $e^{(\mathbf{p}-\mathbf{p}_{i}(t))V^{-1}(\mathbf{p}-\mathbf{p}_{i}(t))^{T}}$

 $\sqrt{4\pi^2}|V|$

- $\mathcal{F} := \mathbb{E}[(\nabla_{\vec{q}} \log \Lambda) \cdot (\nabla_{\vec{q}} \log \Lambda)^{\mathrm{T}}]$
- *Safety risk level:* expected threat exposure over the planned trajectory..
- Determine a spatiotemporal domain of interest where high-ranked data nodes lie.

Trajectory planning

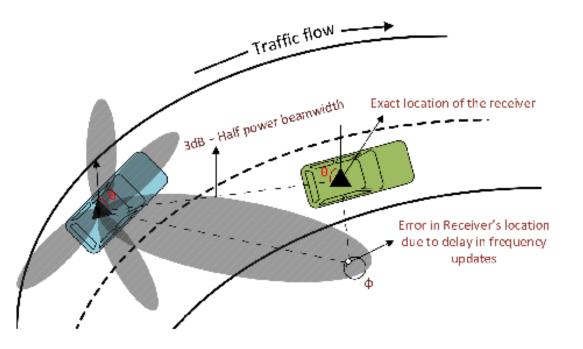
Halfcar dynamical model for ego vehicle

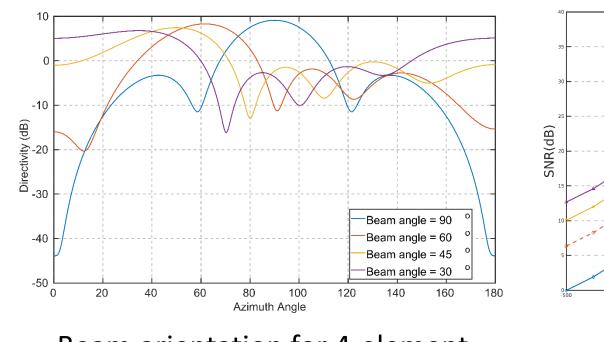
 $m\dot{v}_x = (F_{\mathrm{f}x}\cos\delta - F_{\mathrm{f}y}\sin\delta + F_{\mathrm{r}x}) + mv_y\dot{\psi},$ $m\dot{v}_y = (F_{\mathrm{f}x}\sin\delta + F_{\mathrm{f}y}\cos\delta + F_{\mathrm{r}y}) - mv_x\dot{\psi},$ $I_{z}\ddot{\psi} = \ell_{f}\left(F_{fx}\sin\delta + F_{fy}\cos\delta\right) - \ell_{r}F_{ry},$

Method of lifted graphs

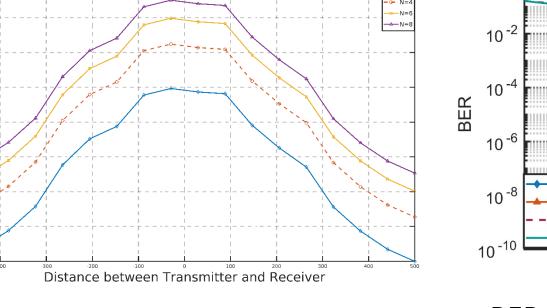
- Incorporate vehicle dynamical constraints in fast graph-based geometric path-planning algorithm.
- Objective is to find path with minimum expected threat.
- Edge transition costs in lifted graph: threat intensity. • Feasibility of edge traversal determined by analyzing dynamical model. • Differential flatness used to determine dynamically feasible traversals in the (x, y) plane.

To/From

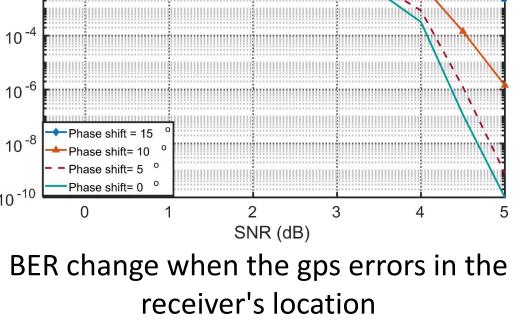

Sensing

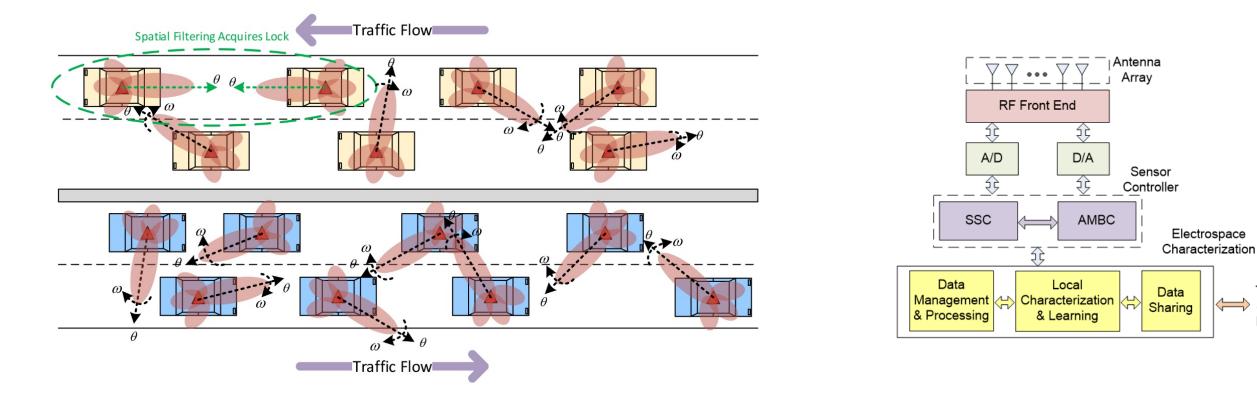

Network

NSF award #1646367

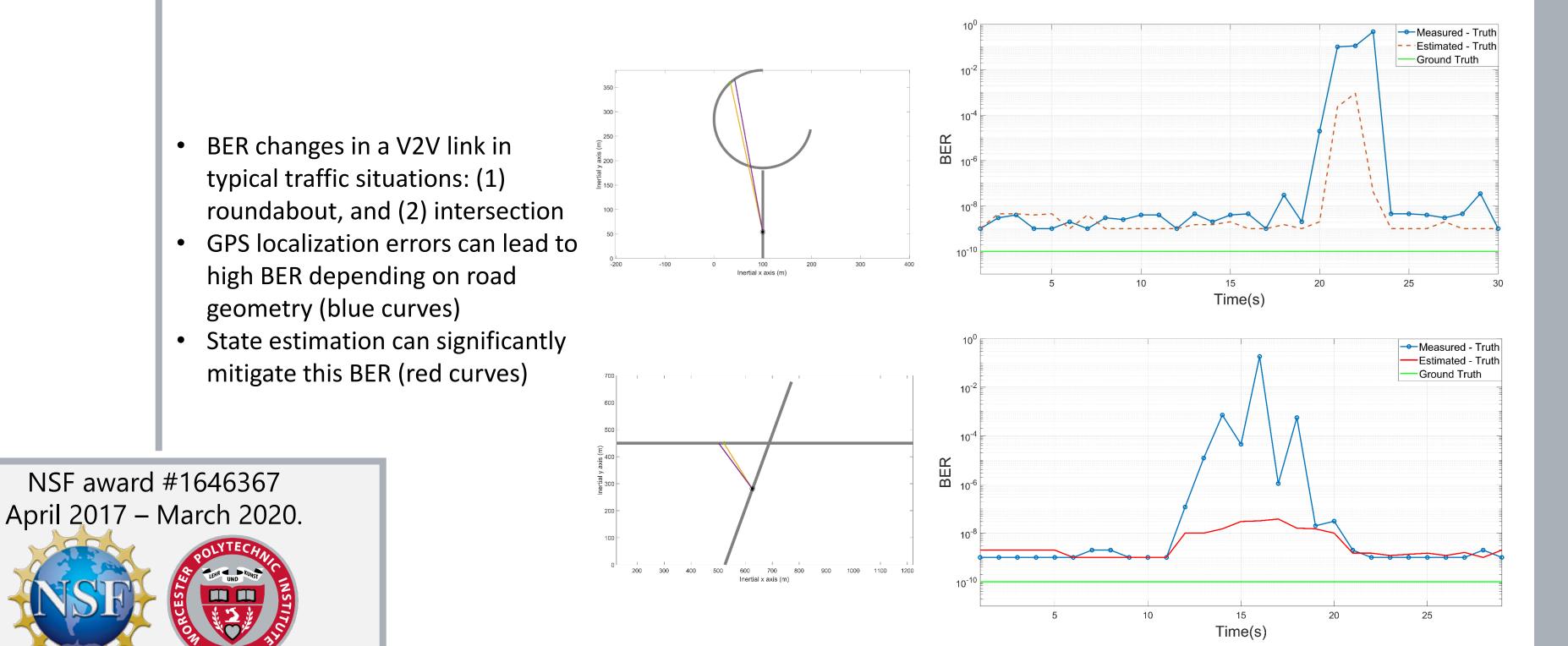

Adaptive beamforming for V2V communications

- Beamforming using phased-array antenna is a promising method to establish low-latency reliable V2V links in congested environments
- Localization errors can significantly affect link quality
- Coupled state-estimation (with measurements from an overhead channel) and beamforming can mitigate the impact of localization errors





SNR change with respect to different distances between tx and rx with the


Software-defined radio for threat reduction

- Spectrum-sensing controller (SSC): coarse-resolution wideband frequency scanning.
- Adaptive multi-beam controller (AMBC): fine-resolution scanning in areas of interest; related to domains of interest identified by trajectory planner.
- *Beamforming* will enable faster spectrum sensing and also spatial filtering to increase comms. capacity within the network.
 - Spatial filtering technique to reduce noise power and interference from other connections.

system when the beam angles

number of array elements varied

