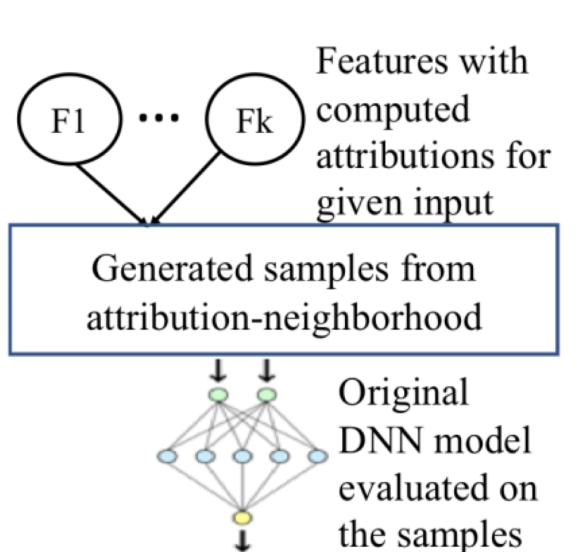
CPS:Small: Self-Improving Cyber-Physical System. Attribution-Based Confidence (ABC) for Deep Learning Models

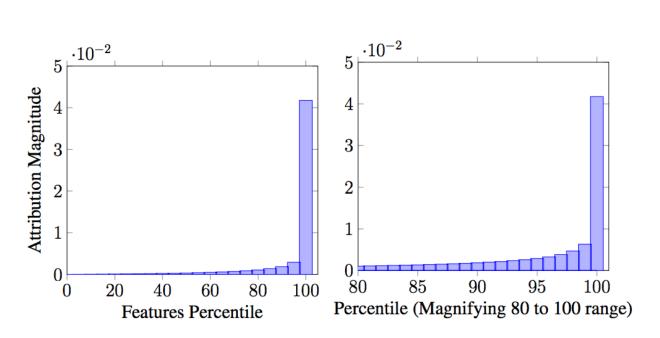
Susmit Jha, SRI

http://csl.sri.com/users/jha/projects/si-cps/sicyps.html

The project pursues the goal of developing the science for designing safe, yet optimal, active data-driven adaptive cyber-physical systems. This requires development of data-driven learning techniques that can quantify uncertainty in prediction and report this confidence measure. The rest of CPS will use the learning model's output and its confidence via uncertainty-aware control.

Focus of the poster: Attribution-based confidence of learned models.





ABC metric computed as

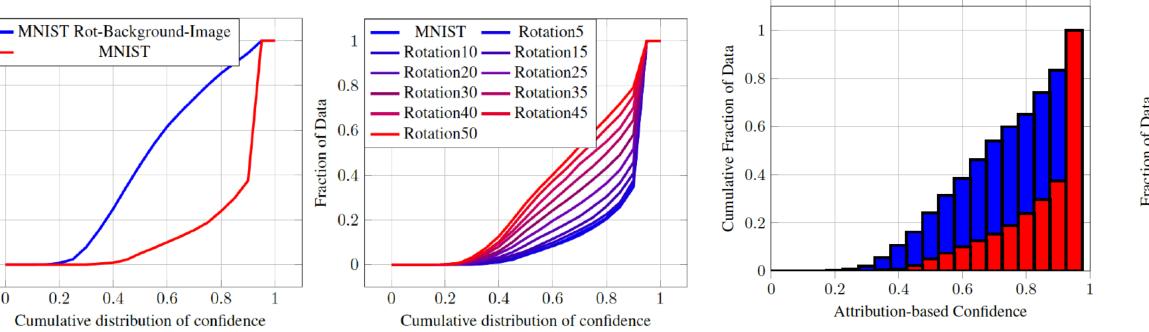
model conformance

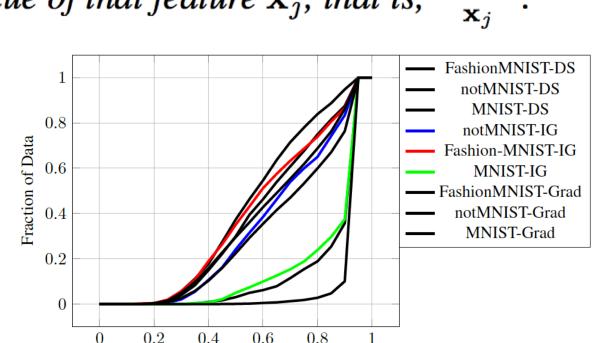
Feature Concentration in well-trained models

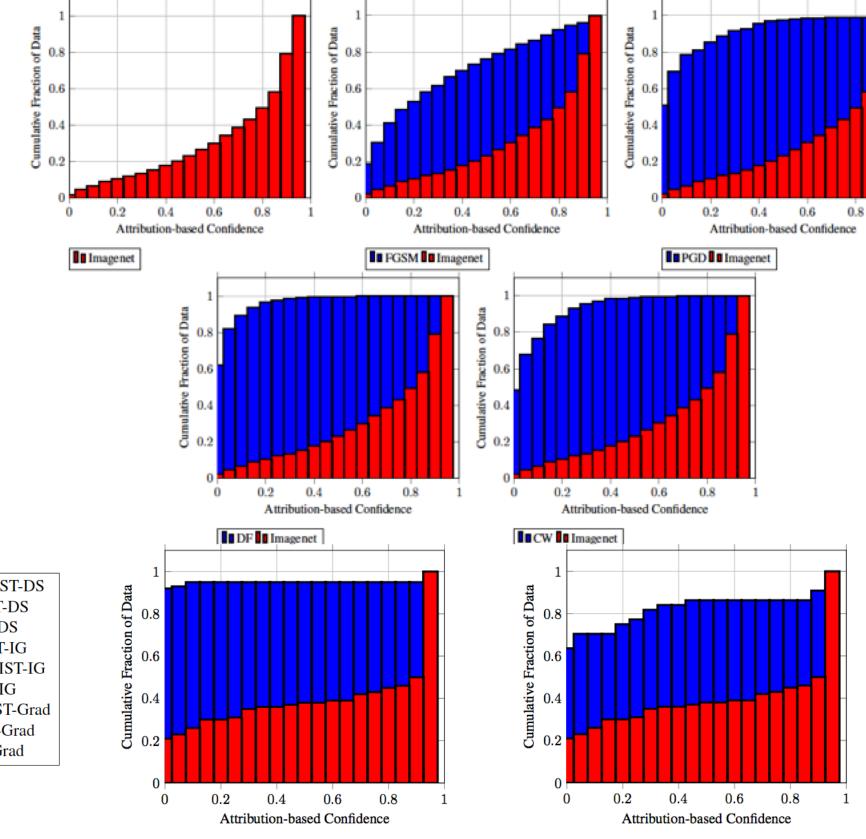
Given an input x for a model \mathcal{F} where \mathcal{F}_i denotes the *i*-th logit output of the model, we can compute attribution of feature x_i of x for label i as $\mathcal{A}_i^i(x)$. We can then obtain confidence in two steps:

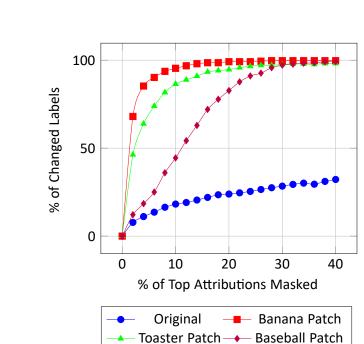
- Sample in neighborhood of x by mutating each feature \mathbf{x}_j with probability $\frac{|\mathcal{A}_j^i(\mathbf{x})/\mathbf{x}_j|}{\sum_j |\mathcal{A}_j^i(\mathbf{x})/\mathbf{x}_j|}$ where the feature \mathbf{x}_j is changed to flip the label away from i.
- Report the fraction of samples points in the neighborhood of input \mathbf{x} for which the decision of the model conforms to the original decision as the conservatively estimated confidence measure.

Theorem 1. The sensitivity of the output $\mathcal{F}(\mathbf{x})$ with respect to an input feature \mathbf{x}_j in the neighborhood of \mathbf{x} is approximately the ratio of the attribution $\mathcal{A}_j(\mathbf{x})$ to the value of that feature \mathbf{x}_j , that is, $\frac{\mathcal{A}_j(\mathbf{x})}{\mathbf{x}_i}$.

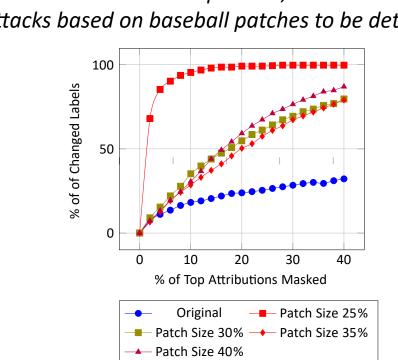








Dropping 0.4% of the attribution causes 99.71% of the attacks based on banana patches, 98.14% of the attacks based on toaster patches, and 99.20% of the attacks based on baseball patches to be detected.



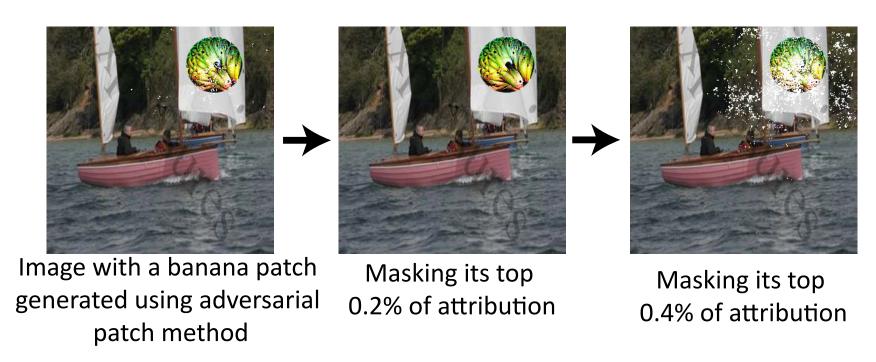
Masking 0.4% of attributions caused nearly 80% of labels to change for images with adversarial patches.

Summary

We proposed a novel attribution-based confidence (ABC) metric.. It does not require access to training data or additional calibration. We empirically evaluated the ABC metric over MNIST and ImageNet datasets using

- (a) out-of-distribution data,
- (b) adversarial inputs generated using digital attacks such as FGSM, PGD, CW and DeepFool, and
- (c) physically-realizable adversarial patches and LaVAN attacks.

<u>Reference</u>: Jha et. al. Attribution-Based Confidence (ABC) Metric For Deep Neural Networks. Thirty-third Conference on Neural Information Processing Systems (NeurIPS), 2019



■ Toaster 25 ■ Imagenet

Adversarial attacks lead to low confidence prediction

Other research results on the project this year:

Logic extraction thrust led publications in JAR'18, NeurIPS'18, FMSD'19, AAAI Consciousness Symposium'19 and a tutorial at NSV'19 (co-located with CAV'19) Uncertainty and risk-aware control thrust led to research results published in JAR'18, Allerton'18, American Control Conference'19, and HSCC'19.

Broader Impact:

3 student interns were supported in part by this project this year. 1 of the 3 students was a woman student. SRI started a collaboration with CodeChix - a non-profit focused on the retention of women in technology (https://www.codechix.org/). Presented at first joint summit in September, 2019.

■ Lavan ■ Imagenet