
w

Overview

 More than 600 million devices globally use adblockers as

of December 2016

 The rise of adblocking has jeopardized the ad-powered

business model and publishers have been deploying anti-

adblocking paywalls

 Users are losing control of what ads they want to see and

protect themselves from malvertising.

 We propose ShadowBlock, a Chromium-based adblocking

browser that bypasses anti-adblocking paywalls

 ShadowBlock bypasses anti-adblocking paywalls with

100% success rate and performs comparably as state-of-

the-art adblockers in terms of ads coverage and page

loading speed

PI: Zhiyun Qian, University of California, Riverside, Zubair Shafiq, The University of Iowa

Key Contributions

 Design and implement a stealthy adblocking browser

 Evade 100% of anti-adblockers and replicate EasyList with 98.3%

accuracy with less than 0.6% breakage

 We find that ShadowBlock loads pages as fast as stock Chromium

running Adblock Plus

 We open source our implementation to allow reproducibility as

well as help future extensions by the research community

(https://github.com/seclab-ucr/ShadowBlock)

More details in our WWW’19 paper:

ShadowBlock: A Lightweight and Stealthy Adblocking Browser

Shitong Zhu, Umar Iqbal, Zhongjie Wang, Zhiyun Qian, Zubair Shafiq,

and Weiteng Chen

The Web Conference (WWW) 2019

ShadowBlock

 Ads Identification

 Statically created ads are detected by monitoring attribute change events

 Dynamically (JavaScript) created ads are detected by monitoring elements created with ad scripts

 Ads Hiding

 ShadowBlock hides the traces of adblocking in a stealthy manner by masking different states caused by
toggling visibility property

 All JavaScript APIs that can be used by anti-adblockers to probe the actual states of ad elements are

hooked to present a fake state as if ads are still intact

Results & Evaluation

 100% success rate against anti-adblockers whereas dedicated filter lists have only 29% success rate

 97.7% accuracy, with 98.2% recall and 99.5% precision in blocking ads on Alex top-1K websites

 Speeds up page loads by 5.96% in terms of median Page Load Time (PLT) and 6.37% in terms of median

SpeedIndex on Alexa top-1K websites

Tool Notification Ad Switching Crypto-mining

Total 201 5 1

ShadowBlock 201 (100%) 5 (100%) 1 (100%)

Filter lists 59 (29%) 1 (20%) 0 (0%)

It looks like you’re

using an ad-blocker!

Execution Projection

 Dynamically created ad elements can be identified by

tracking execution stack

 Determining the ad-ness by asserting whether there is any

ad script on stack at DOM events

 Feasible due to single-threaded JavaScript execution

// Typical dynamically created ad

var ad_img = document.createElement("img");

ad_img.src = "https://advertiser.com/ad.jpg";

document.body.appendChild(ad_img);

www.shitong.me

 @zst_rising88
Event TP FN TN FP

Count
926

(98.2%)

17

(2.8%)

938

(99.5%)

5

(0.5%)

Hiding Mechanism

 DOM/CSS Layer: parse flat HTML and CSS in plain-text

 Render Tree Layer: combined from DOM and CSSOM

 Paint Layer: generating rendered pixels

to user’s viewpoint according to Render Tree

 We choose to toggle CSS property visibility:

visible as our ad element hiding mechanism

 Low-level enough so there are minimum number of

channels leaking the action to hook

 High-level enough to avoid complex object translation

Chromium Instrumentation

 Low level instrumentation makes ShadowBlock stealthy and

efficient

 We instrument two major components in Chromium: Blink and V8

 Blink is responsible for constructing the rendering tree

 Bindings module handles interaction between V8 and Blink

 Hooking for ad identification

 Capture element creation and modification

 Capture JavaScript execution stack

 Hooking for concealing actions

 CSS/Style related – getComputedStyle()

 Event Related – onfocus

 Hit testing related – elementFromPoint()

 Keep track of ad related scripts in execution stack and their activity

(execution projection) and element modifications for identifying

ad elements

Demo

www.umariqbal.com

@umaarr6

Shadow Elements

 How do anti-adblockers detect the use of adblockers?

 Blocking ads introduces different states that are

observable to JavaScript runtime

 The key of hiding adblockers is masking the difference

 We must mask the state returned to
getElementById() for DOM element “some_ad” as if

it is still intact, even though it has been hidden by us

// Example anti-adblocking code

var adblock_state =

document.getElementById('some_ad');

window.setTimeout(function() {

 if (adblock_state === undefined)

 show_paywall();

}, some_timeout);

// What difference to mask?

var adblock_state =

document.getElementById('some_ad’);

JavaScript API Ad

DOM element

The 4th NSF Secure and Trustworthy Cyberspace Principal Investigator Meeting
October 28-29, 2019 | Alexandria, Virginia

Project URL : https://github.com/seclab-ucr/ShadowBlock

www.cs.ucr.edu/~zhiyunq

 @pkqzy888

homepage.divms.uiowa.edu/

~mshafiq

@zubair_shafiq

https://github.com/seclab-ucr/ShadowBlock
https://github.com/seclab-ucr/ShadowBlock
https://github.com/seclab-ucr/ShadowBlock
https://github.com/seclab-ucr/ShadowBlock

