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Motivations and Research Goals

• Conventional: design for performance, safety by control

• Objective: safety by design, performance by control
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Research Team and Tasks

• Research Tasks
– TASK 1: Develop a compliant mechanism 

and smart material actuator co-design 

framework for SMART links (Su, Dapino)

– TASK 2: Develop a control law and 

compliant mechanism co-design 

framework of SMART links with safety 

constraints (Su, Wang)

– TASK 3: Investigate methods for 

simultaneously controlling link motion and 

stiffness for achieving maximum 

performance under HIC constraint 

(Wang, Dapino)

– TASK 4: Integrate a comprehensive 

compliance design, stiffness modulation, 

and motion control framework of multi-

linked SMART manipulators (Su, Dapino, 

Wang)
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Current Solutions of Corobots

• Sensor based: vision for collision detection, 

torque/force sensor at joints

• Variable stiffness actuators (VSA): series elastic 

actuators/joints

• Mechanical Fuse: maximum force/torque limit

Design of Variable Stiffness Actuator Based on Modified 

Gear–Rack Mechanism, Wang et al., ASME JMR, 2016.

Force Capabilities of Two-Degree-of-Freedom Serial 

Robots Equipped With Passive Isotropic Force Limiters, 

Zhang et al., ASME JMR, 2016



Comparison of Compliant Link and Compliant Joints

• Compare safety criteria: HIC distribution/impact force

• Compare the control performance: natural frequency and 

bandwidth
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(a) Compliant Joint 

(CJ) Design
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(CL) design

CL results a significantly smaller 

impact force than CJ particularly 

for small 𝑚𝑒/𝑚𝑟.



The Design Strategy for Variable Stiffness Links

• Variable stiffness of compliant links via shape 

morphing, material property tuning

• Head Injury Criterion (HIC) is determined by 

mass, velocity and stiffness 
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Variable Stiffness via Shape Morphing

• Moment of inertia of straight beam vs. curved beams

• Shape morphing actuation via four-bar linkages
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Impact Testing Results

• Head Injury Criteria (HIC)

• Actual stiffness change ratio  3.6

• Impact testing results: 

–Peak acceleration dropped from 56.7 m/s2 to 45.7 m/s2

–29% (210.3 m2.5/s-4 to 153.3 m2.5/s-4 ) reduction in HIC at 

impact speed of 2.2m/s



Variable Stiffness by Rotating Beams

• Synchronized symmetric beams 

change the second moment of inertia, 

so that 𝐼(𝜃) in 𝑘 = 𝑛
𝐸𝐼

𝐿3

• Aluminum beams, small hobby 

servos, nylon gears



Testing Results

Max stiffness: 2.25 N/mm

Min stiffness: 0.16 N/mm

Median stiffness: 1.38 N/mm

Max/min stiffness ratio: 13.9

Actuation time: <0.25 s

Peak power draw: 15 W

Average power draw: 9 W

Mass of Design: 1.27 kg

Load vs Displacement Measurement of Stiffness

Power Consumption Actuating Under Load Comparison of Stiffness With Model
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• Stiffness ratio  13.9

• Analytical model from first 

principles accounts for buckling & 

actuation components predicts 

stiffness variation.
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Variable Stiffness by Changing Effective Length

• Change effective length in 𝑘 ∝
𝐸𝐼

𝐿3

• L ranged from 5 to 30 𝑐𝑚.

• 𝑘 change from 4.2 × 103 to 193 𝑁/𝑚, about 21.7 fold.

• Drive carriage by lead screw with DC motor 

or pneumatic linear actuator.



Discrete Layer Jamming Concept (1)

L1
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End 
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Fixed end
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Clamp location

Both stiffness and stiffness ratio have maximum values at 𝜶 = 𝟎. 𝟓, i.e. 𝑳𝟏 = 𝟎. 𝟓𝑳
For middle clamp location, best near middle and worst near ends of the beam

Key Parameters: clamp location, clamp width, friction coefficient, number of clamps, and number of laminates

Stiffness is obtained from force-displacement curves from cantilever bending simulation

Clamp width

Stiffness increases with clamp width, a 40.4 times stiffness change can be achieved with 40% of the area of the beam clamped

Large, stiff clamps can add bulk to the system



Discrete Layer Jamming Concept (2)

Friction coefficient (µ)
• µ has little effect on stiffness at the no pressure state 

or M3E3

• Stiffness and stiffness ratio increase significantly 

with µ at intermediate pressure states

• Maximum stiffness ratios are almost the same for 

all friction coefficient cases

Number of clamps (N)

𝑵 = 𝟏 𝑵 = 𝟐

𝑵 = 𝟑 𝑵 = 𝟒

40 mm
20 mm

13.3 mm 10 mm

• The more clamps, 

the higher the 

stiffness and 

stiffness ratio

• 4 clamps yield a 

maximum stiffness 

ratio of 46

Number of laminates (n)
• Same total thickness for all cases: 15.9 mm

• The more number of laminates, the higher the stiffness ratio

• The less number of laminates, the higher the stiffness range



Compliant Links for Corobots

• Stiffness control theme: 

high stiffness at low 

speed, low stiffness at 

high speed

• Keep safety level below a 

threshold

• Under the safety 

constraint, the higher the 

stiffness of the robot 

link, the better of the 

control performance
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Dynamics Control of Variable Stiffness Link (1)

• Dynamic Modeling: the pseudo-rigid-body model

• Compound control architecture

– Uncertainties and disturbances: extended state observer (ESO)

– Vibration suppression: deflection feedback
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Dynamics Control of Variable Stiffness Link (2)

• Smaller steady-state 

error (by uncertainties 

and disturbance 

compensation)

• Better vibration 

suppression (by 

deflection feedback)



Impact Dynamics of Variable Stiffness Link

• A mass-spring-mass impact model

• Single-link case (by optimal 

control):

–Low-speed: high stiffness

–High-speed: low stiffness

• Multi-link case 

(by optimization)
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Future Work
• Methods for simultaneously controlling motion and stiffness for 

achieving maximum performance under safety constraints, and 

• Design, stiffness and motion control of multi-linked robotic 

manipulators with variable stiffness arms
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