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INTRODUCTION 
This project aims to enable autonomous 
goal-directed robot manipulation of 
cluttered scenes. Manipulation of objects 
in a complex cluttered scene demands 
accurate scene estimation [1, 3], 
part icularly for object poses and 
geometries. Towards this end, we explore 
pose estimation and geometry data 
collection as the two principal activities of 
our project to develop: (1) physics-
informed pose estimation methods 
(initially described [2]) and (2) object 
geometry extraction using sketch-based 
interfaces [5]. Our current results have 
been used to demonstrate manipulation 
in cluttered scenes with the Willow 
G a r a g e P R 2 a n d F e t c h m o b i l e 
manipulation platforms. We now factor 
this problem as a Markov Random Field 
due to the complexity and dimensionality 
of scenes. Our larger goal is to enable 
Semantic Robot Programming [9], 
where users demonstrate goals to 
autonomous robots as desired scene 
states in 3D semantic maps.

MOTIVATION 

A scene graph representation is amenable to autonomous task execution by 
robots using descriptive planning languages [6,7] and motion planning [8]

Goal-directed task planning
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Measure of Clutterness

We propose a measure to analyze the clutter ness 
of a scene using the proportion of scene object 
visibility.
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Fig. 2: Graphical Model (c) is constructed using the scene graph prior
along the observed 2D object detections derived from the RGBD sensor
data. In the constructed graphical model the edges denote the type of relation
between the objects: black for support relations, cyan: non-colliding relation.
The colors in (b) correspond to the object bounding box colors in (a).
Inference on this graph is initialized with the object bounding boxes and
the corresponding point clouds. Initial belief samples are shown in (d) and
the inference iteratively propagates these beliefs to (e). The final estimate
is shown in (f) using a post processing step using Iterative Closest Point
(ICP) (discussed later in the paper).

as long as the priors have 100% recall.
Recent works such as [21] propose systems that can

work on wild image data and refine the object detections
along with their relations. However these methods do not
consider the continuous pose in their estimation and work
in pixel domain. Chua et. al [2] propose a scene grammar
representation and belief propagation over factor graphs,
whose objective is in generating scenes with multiple-objects
satisfying the scene grammars. We specifically deal with
RGBD observations and infer with continuous variables
pose variables whereas Chua et. al [2] applies to RGB
observations and discrete variables.

III. METHODOLOGY

A. Problem Statement

A robot observes a scene using an RGBD sensor, which
gives an RGB image I and a point cloud P . An object
detector takes I as an input and produces object bounding
boxes B = {b1, b2, ..., bk} and corresponding confidence
scores C = {c1, c2, ..., ck}, with k being the number of
detections. We make an assumption that the detector has
a 100% recall.Using these detections, an undirected graph
G = (V,E) is constructed with nodes V and edges E. For
each unique object label from the object detection result,
there exists a corresponding observed node in the graph G.
Let Y = {y
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hidden node that represents the pose of the underlying object.
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2 Rd with d being the dimensions of the pose of
the object. This graph G consists of N hidden nodes if there

are N objects with labels L = {l1, l2, ..., lN} present in the
scene. However, k � N as there could be multiple detections
with the same label. G represents a scene with the observed
and hidden nodes. Scene estimation involves finding this
graph structure along with the inference on the hidden nodes.
In this paper we assume that the graph structure is known
apriori. This known graph structure in the form of scene
graph provides the edges E showing the relations between
the hidden nodes. The edges in our problem represent the
relation between the objects in the scene. More precisely,
we have two types of edges: one showing that an object is
supporting/supported by another object (dark black in Fig 2),
the other one indicating that an object is not in contact with
another object (cyan in Fig 2). The joint probability of this
graph considering only second order cliques is given as:
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, and Z is a normalizing
factor. Pairwise potential can be modeled using the type
of edges to perform the inference over this graph. We
use Nonparametric Belief Propagation (NBP) [16] to pass
messages over continuous variables and perform inference
on a loopy graph structure such as ours (see Fig 2).

After converging over iterations, the maximum likelihood
estimate of this marginal belief gives the pose estimate xest

s

of the object corresponding to the node in the graph G. The
collection of all these pose estimates form the scene estimate.

B. Nonparametric Belief Propagation

Loopy belief propagation in the context of continuous vari-
ables is shown in Algorithm 1. Computing message updates
in continuous domain is nontrivial. A message update in a
continuous domain at an iteration n from a node t! s is:
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where ⇢(t) is a set of neighbor nodes of t. The marginal
belief over each hidden node at iteration n is given by:
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Fig. 2: Graphical Model (c) is constructed using the scene graph prior
along the observed 2D object detections derived from the RGBD sensor
data. In the constructed graphical model the edges denote the type of relation
between the objects: black for support relations, cyan: non-colliding relation.
The colors in (b) correspond to the object bounding box colors in (a).
Inference on this graph is initialized with the object bounding boxes and
the corresponding point clouds. Initial belief samples are shown in (d) and
the inference iteratively propagates these beliefs to (e). The final estimate
is shown in (f) using a post processing step using Iterative Closest Point
(ICP) (discussed later in the paper).
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Recent works such as [21] propose systems that can

work on wild image data and refine the object detections
along with their relations. However these methods do not
consider the continuous pose in their estimation and work
in pixel domain. Chua et. al [2] propose a scene grammar
representation and belief propagation over factor graphs,
whose objective is in generating scenes with multiple-objects
satisfying the scene grammars. We specifically deal with
RGBD observations and infer with continuous variables
pose variables whereas Chua et. al [2] applies to RGB
observations and discrete variables.

III. METHODOLOGY

A. Problem Statement

A robot observes a scene using an RGBD sensor, which
gives an RGB image I and a point cloud P . An object
detector takes I as an input and produces object bounding
boxes B = {b1, b2, ..., bk} and corresponding confidence
scores C = {c1, c2, ..., ck}, with k being the number of
detections. We make an assumption that the detector has
a 100% recall.Using these detections, an undirected graph
G = (V,E) is constructed with nodes V and edges E. For
each unique object label from the object detection result,
there exists a corresponding observed node in the graph G.
Let Y = {y

s

| y
s

2 V } denote the set of observed variables,
where y

s

= (l
s

, B
s

, C
s

), with detections B
s

✓ B and
confidences C

s

✓ C from the object detector corresponding
to object label l

s

2 L. Each observed node is connected to a
hidden node that represents the pose of the underlying object.
Let X = {x

s

| x
s

2 V } denote a set of hidden variables,
where x

s

2 Rd with d being the dimensions of the pose of
the object. This graph G consists of N hidden nodes if there

are N objects with labels L = {l1, l2, ..., lN} present in the
scene. However, k � N as there could be multiple detections
with the same label. G represents a scene with the observed
and hidden nodes. Scene estimation involves finding this
graph structure along with the inference on the hidden nodes.
In this paper we assume that the graph structure is known
apriori. This known graph structure in the form of scene
graph provides the edges E showing the relations between
the hidden nodes. The edges in our problem represent the
relation between the objects in the scene. More precisely,
we have two types of edges: one showing that an object is
supporting/supported by another object (dark black in Fig 2),
the other one indicating that an object is not in contact with
another object (cyan in Fig 2). The joint probability of this
graph considering only second order cliques is given as:

p(x, y) =
1

Z

Y

(s,t)2E

 
s,t

(x
s

, x
t

)
Y

s2V

�
s

(x
s

, y
s

) (1)

where  
s,t

(x
s

, x
t

) is the pairwise potential between nodes x
s

and x
t

, �
s

(x
s

, y
s

) is the unary potential between the hidden
node x

s

and observed node y
s

, and Z is a normalizing
factor. Pairwise potential can be modeled using the type
of edges to perform the inference over this graph. We
use Nonparametric Belief Propagation (NBP) [16] to pass
messages over continuous variables and perform inference
on a loopy graph structure such as ours (see Fig 2).

After converging over iterations, the maximum likelihood
estimate of this marginal belief gives the pose estimate xest

s

of the object corresponding to the node in the graph G. The
collection of all these pose estimates form the scene estimate.

B. Nonparametric Belief Propagation

Loopy belief propagation in the context of continuous vari-
ables is shown in Algorithm 1. Computing message updates
in continuous domain is nontrivial. A message update in a
continuous domain at an iteration n from a node t! s is:

mn

ts

(x
s

) 
Z

x

t

2Rd

✓
 
st

(x
s

, x
t

)�
t

(x
t

, y
t

)

Y

u2⇢(t)\s

mn�1
ut

(x
t

)

◆
dx

t

(2)

where ⇢(t) is a set of neighbor nodes of t. The marginal
belief over each hidden node at iteration n is given by:

beln
s

(x
s

) / �
s

(x
s

, y
s

)
Y

t2⇢(s)

mn

ts

(x
s

) (3)

We approximate each message mn

ts

(x
s

) as a mixture of
weighted Gaussian components given as:

mn

ts

(x
s

) =
MX

i=1

w
s

(i)N (x
s

;µ
s

(i),⇤
s

(i)) (4)

where M is the number of Gaussian components, w
s

(i) is the
weight associated with the ith component, µ

s

(i) and ⇤
s

(i)

(a) Observed de-
tections

(b) Scene graph prior

�6 �7

�2

�6

�3

�7

�4 �5

�1

�3 �4 �5

�1

�2

(c) Markov random field

(d) Initial belief samples (e) Final belief samples (f) Final estimate

Fig. 2: Graphical Model (c) is constructed using the scene graph prior
along the observed 2D object detections derived from the RGBD sensor
data. In the constructed graphical model the edges denote the type of relation
between the objects: black for support relations, cyan: non-colliding relation.
The colors in (b) correspond to the object bounding box colors in (a).
Inference on this graph is initialized with the object bounding boxes and
the corresponding point clouds. Initial belief samples are shown in (d) and
the inference iteratively propagates these beliefs to (e). The final estimate
is shown in (f) using a post processing step using Iterative Closest Point
(ICP) (discussed later in the paper).
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