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INTRODUCTION |

This project aims to enable autonomous
goal-directed robot manipulation of
cluttered scenes. Manipulation of objects
in a complex cluttered scene demands
accurate scene estimation [1, 3],
particularly for object poses and
geometries. Towards this end, we explore
pose estimation and geometry data
collection as the two principal activities of
our project to develop: (1) physics-
informed pose estimation methods
(initially described [2]) and (2) object
geometry extraction using sketch-based
interfaces [5]. Our current results have
been used to demonstrate manipulation
in cluttered scenes with the Willow
Garage PR2 and Fetch mobile
manipulation platforms. We now factor
this problem as a Markov Random Field
due to the complexity and dimensionality
of scenes. Our larger goal is to enable
Semantic Robot Programming [9],
where users demonstrate goals to
autonomous robots as desired scene
states in 3D semantic maps.

| MOTIVATION |
‘ Goal-directed task planning ‘

A scene graph representation is amenable to autonomous task execution by
robots using descriptive planning languages [6,7] and motion planning [8]
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Measure of Clutterness

We propose a measure to analyze the clutter ness
of a scene using the proportion of scene object
visibilitv.
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PHYSICS INFORMED SCENE ESTIMATION [2]
FOLLOWED BY MANIPULATION

PULL MESSAGE PASSING FOR NONPARAMETRIC BELIEF
PROPAGATION (PMPNBP) [11]
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Video sequence showing PR2 manipulating objects using the estimated poses

NONPARAMETRIC SCENE ESTIMATION

Probabilistic
Graphical Model:
Markov Random

Field (MRF)

Undirected Graph G =

(V.E)
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Gaussians and sampling techniques used to
compute the update [10]
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Marginal Belief of
each node:

Final Pose Estimates
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MRF for this illustration

Belief Update at iteration n-1
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‘ POSE ESTIMATION OF ARTICULATED OBJECTS WITH PMPNBP ‘

' 3D bsérVation

Initial Belief Samples

- Point Cloud : -
Original Scene Observation Final Pose Estimates in different views



